Skip to main navigation
Skip to search
Skip to main content
Vrije Universiteit Brussel Home
Help & FAQ
English
Nederlands
Home
Research Units
Profiles
Projects
Research output
Activities
Equipment
Prizes
Press / Media
Student theses
Datasets
Impacts
Search by expertise, name or affiliation
Electromobility research centre
Vrije Universiteit Brussel
Research Council
Phone
+32-2-6148303
Email
mobi@vub.ac.be
,
mobi@vub.be
Website
https://mobi.research.vub.be
Address
Pleinlaan 2
1050
Brussels
Belgium
Overview
Fingerprint
Network
Profiles
(122)
Projects
(276)
Research output
(2050)
Activities
(1115)
Datasets
(1)
Research output
Research output per year
1900
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
22575
Citations
73
h-index
681
Article
601
Conference paper
183
Commissioned report
148
Meeting abstract (Book)
437
More
140
Chapter
66
Unpublished abstract
56
Poster
43
Unpublished paper
32
PhD Thesis
24
Book
12
Other contribution
11
Other report
8
Editorial
6
Patent
5
Scientific review
5
Blog
5
Working paper
4
Scholarly edition
3
Foreword/postscript
3
Meeting abstract (Journal)
3
Preprint
2
Entry for encyclopedia/dictionary
2
Comment/debate
2
Other scientific journal contribution
1
Other chapter contribution
1
Other
1
Special issue
1
Digital or Visual Products
1
Software
Research output per year
Research output per year
3 results
Publication Year, Title
(descending)
Publication Year, Title
(ascending)
Title
Type
Filter
Preprint
Search results
2022
Safe reinforcement learning for multi-energy management systems with known constraint functions
Ceusters, G.
,
Camargo, L. R.
, Franke, R.,
Nowé, A.
&
Messagie, M.
,
8 Jul 2022
,
arXiv
.
Research output
:
Working paper
›
Preprint
Open Access
2021
Model-predictive control and reinforcement learning in multi-energy system case studies
Ceusters, G.
, Rodríguez, R. C., García, A. B., Franke, R., Deconinck, G., Helsen, L.,
Nowé, A.
,
Messagie, M.
&
Camargo, L. R.
,
20 Apr 2021
,
35 p.
(ArXiv.org).
Research output
:
Working paper
›
Preprint
File
Reinforcement learning
100%
Model predictive control
97%
Benchmarking
20%
Dynamical systems
15%
Costs
14%
80
Downloads (Pure)
2020
HydaLearn: Highly Dynamic Task Weighting for Multi-task Learning with Auxiliary Tasks
Verboven, S.
, Chaudhary, M. H., Berrevoets, J. &
Verbeke, W.
,
26 Aug 2020
.
Research output
:
Working paper
›
Preprint