Explainable Physics-guided Deep Learning for Air Pollution Inference

Project Details

Description

Air pollution has become a world-wide concern due to its negative impact on the population's health and well-being. To mitigate its effects, it is essential to accurately monitor pollutant concentrations across regions and time. Traditional solutions rely on physics-driven approaches, leveraging equations of particle motion to predict pollutants’ shift in time. Despite being reliable and easy-to-interpret, they are computationally highly expensive. Recent works have shown that following a deep-learning data-driven approach significantly reduces the computational expenses and provides accurate predictions; yet, at the cost of lower interpretability. This PhD research aims to develop innovative air pollution monitoring solutions with high accuracy, manageable complexity and high interpretability.

To this end, the focus will be put on physics-guided deep learning approaches, namely, to design deep-learning-based models following well-studied physical equations. In addition, innovative data fusion techniques will be incorporated into the models to leverage data from multiple modalities. The research is envisioned to produce state-of-the-art models that combine the best of both physics- and deep-learning-based approaches for monitoring air pollution. The developed techniques could also lead to various applications in modelling other natural processes such as weather prediction and water monitoring, and applications on the Internet such as recommender systems or fake news analysis.
AcronymFWOSB105
StatusActive
Effective start/end date1/11/20 → 31/10/22

Keywords

  • Physics-guided deep learning
  • Air pollution inference
  • Explainability

Flemish discipline codes

  • Atmospheric physics
  • Mathematical software
  • Modelling and simulation
  • Numerical computation
  • Scientific computing not elsewhere classified