Abstract
Native to Europe, North Africa and western Asia, the yellow flag (Iris pseudacorus L.) has long been
exported globally as a valuable ornamental and pond plant (Sutherland 1990), occasionally escaping
cultivation and establishing itself as an invasive species. Outside of its native range, this emergent
macrophyte tends to grow dense monospecific stands, displacing the local vegetation and altering the
hydrology of aquatic ecosystems (Jacobs et al. 2011). To date, this species is considered invasive in
Canada, part of the U.S., Chile, Argentina, Uruguay, South Africa, Japan, Australia and New Zealand
(USDA 2013). Due to its potential ecological and economic impacts, in South Africa, it was recently
listed as a category 1a invader for which management actions need to be prioritized (NEMBA 2014,
Jaca & Mkhize 2015). Because mechanical and chemical control methods are regarded as
unsustainable in the long term, a biological control program was initiated to tackle its invasion (Hill &
Coetzee 2017). In this regard, we conducted a preliminary survey of yellow flag’s native populations in
Europe in order to identify its naturally co‐evolved enemies and prioritize a set of candidate biocontrol
agents to be investigated. A total of 12 locations (36 sampling sites) were visited between 2017 and
2018, covering different seasons and accounting for a variety of habitats across Belgium and Northern
Italy. At each site, we collected invertebrates found on the plant and recorded their feeding behaviour
in relation to our target as well as to the co‐occurring native vegetation. Of the 61 species identified
from our sampling, only two met the criteria applied for selecting the candidates. Further
investigations focused on the iris flea beetle, Aphthona nonstriata Goeze (Coleoptera: Chrysomelidae),
in an attempt to fill the knowledge gap regarding its biology. Controlled life‐history observations
highlighted the potential of this species to impair the growth and survival of I. pseudacorus. Adults are
voracious leaf‐miners, whereas the larvae bore and develop within the plant rhizomes, generating
wounds that may be a vector for bacterial and fungal infections. Finally, a short‐term no‐choice feeding
assessment was carried both on cut leaves and live plants. The results showed adult flea beetles
feeding significantly more on our target compared to the other plants tested. A population of beetles
are currently undergoing host‐specificity testing within the quarantine facility of the Centre for
Biological Control at the Rhodes University (South Africa), where it will soon be joined by our second
candidate. Altogether, the information gathered through this research constitute a first fundamental
step towards the biological control of I. pseudacorus in South Africa, and possibly elsewhere in the
world.
Original language | English |
---|---|
Pages | 152 |
Number of pages | 1 |
Publication status | Published - 2019 |
Event | 15th International Conference on Ecology and Management of Alien Plant invasions: Integrating research, management and policy - Institute of Botany of the Czech Academy of Sciences and Czech University of Life Sciences, Prague, Czech Republic Duration: 9 Sep 2019 → 13 Sep 2019 Conference number: 15 https://emapi2019.org/ |
Conference
Conference | 15th International Conference on Ecology and Management of Alien Plant invasions |
---|---|
Abbreviated title | EMAPi |
Country/Territory | Czech Republic |
City | Prague |
Period | 9/09/19 → 13/09/19 |
Internet address |
Bibliographical note
Minuti, G., Ngxande‐Koza, S., Coetzee, J.A., & Stiers, I. (2019). A first step towards the biological control of Iris pseudacorus L. (Iridaceae) [Poster]. 15th international conference on Ecology and Management of Alien Plant invasions (EMAPi), Prague, Czech Republic.Keywords
- Plant ecology
- Invasion biology
- Weed biological control
- Host-specificity testing
- International collaboration