Acinar phenotype is preserved in human exocrine pancreas cells cultured at low temperature: implications for lineage-tracing of beta cell neogenesis

Josue Mfopou Kunjom, Isabelle Houbracken, Elke Wauters, Iris Mathijs, Imane Song, Eddy Himpe, Jonathan Baldan, Henry Heimberg, Luc Bouwens

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)
314 Downloads (Pure)

Abstract

The regenerative medicine field is expanding with great successes in laboratory and pre-clinical settings. Pancreatic acinar cells in diabetic mice were recently converted into beta cells by treatment with ciliary neurotrophic factor and epidermal growth factor. This suggests that human acinar cells might become a cornerstone for diabetes cell therapy in the future, if they can also be converted into glucose-responsive insulin-producing cells. Presently, studying pancreatic acinar cell biology in vitro is limited by their high plasticity, as they rapidly loose their phenotype and spontaneously transdifferentiate to a duct-like phenotype in culture. We questioned whether human pancreatic acinar cell phenotype could be preserved in vitro by physico-chemical manipulations and whether this could be valuable in the study of beta cell neogenesis. We found that culture at low temperature (4°C) resulted in the maintenance of morphological and molecular acinar cell characteristics. Specifically, chilled acinar cells did not form the spherical clusters observed in controls (culture at 37°C), and they maintained high levels of acinar-specific transcripts and proteins. Five-day chilled acinar cells still transdifferentiated into duct-like cells upon transfer to 37°C. Moreover, adenoviral-mediated gene transfer evidenced an active Amylase promoter in the 7-day chilled acinar cells, and transduction performed in chilled conditions improved acinar cell labeling. Together, our findings indicate the maintenance of human pancreatic acinar cell phenotype at low temperature and the possibility to efficiently label acinar cells, which opens new perspectives for the study of human acinar-to-beta cell transdifferentiation.

Original languageEnglish
Article numbere00329
Pages (from-to)1-15
Number of pages15
JournalBioscience Reports
Volume36
Issue number3
DOIs
Publication statusPublished - 2016

Keywords

  • pancreas
  • acinar cells
  • beta cells
  • neogenesis

Fingerprint

Dive into the research topics of 'Acinar phenotype is preserved in human exocrine pancreas cells cultured at low temperature: implications for lineage-tracing of beta cell neogenesis'. Together they form a unique fingerprint.

Cite this