Abstract
Chemical modification of montmorillonite (MMT-Na or mont-0) was achieved using different doses of cetyltrimethylammonium bromide to produce montmorillonite amphiphiles until reaching the ultimate hydrophobic form (mont-100). The order of hydrophobicity increases in the direction mont-0 < mont-25 < mont-50 < mont-100. 20 phr of each amphiphilic montmorillonite was utilized independently as compatibilizing filler for NBR/SBR (50/50) polymer blend, which is known to be incompatible. Our previous studies on these blends using various techniques showed a noteworthy improvement in their mechanical performance and aging resistance. This was attributed to the capability of the well-balanced montmorillonite amphiphiles to exist and interact with both components of the blend by different extents and limit the initiated phase separation between them as evidenced by scanning electron microscopy and X-ray diffraction. Here, we report supplementary authentication of this principle from the kinetics and behaviour of thermal degradation of the blends using Kissinger, Flynn–Wall–Ozawa, and Friedman methods. In addition, this would be helpful in designing proper thermal treatment regimes for the scraps of these materials at the end of their service life to avail maximum fractions of light hydrocarbons for recycling purposes.
Original language | English |
---|---|
Pages (from-to) | 1417-1430 |
Number of pages | 14 |
Journal | Polymer Bulletin |
Volume | 75 |
Issue number | 4 |
Early online date | 22 Jun 2017 |
DOIs | |
Publication status | Published - Apr 2018 |
Keywords
- polymer blend
- Amphiphilic
- Montmorillonite
- Thermal gravimetric analysis
- degradation kinetics
- Blend