Abstract
We have reported in Phys. Rev. Lett. 110, 064103 (2013) that in systems which otherwise do not show oscillatory dynamics, the interplay between pinning to a defect and pulling by drift allows the system to exhibit excitability and oscillations. Here we build on this work and present a detailed bifurcation analysis of the various dynamical instabilities that result from the competition between a pulling force generated by the drift and a pinning of the solitons to spatial defects. We show that oscillatory and excitable dynamics of dissipative solitons find their origin in multiple codimension-2 bifurcation points. Moreover, we demonstrate that the mechanisms leading to these dynamical regimes are generic for any system admitting dissipative solitons.
| Original language | English |
|---|---|
| Article number | 012211 |
| Number of pages | 17 |
| Journal | Physical Review E. Statistical, Nonlinear, and Soft Matter Physics |
| Volume | 93 |
| DOIs | |
| Publication status | Published - 20 Jan 2016 |