4 Citations (Scopus)
17 Downloads (Pure)

Abstract

Lithium-ion (Li-ion) batteries have emerged as a promising energy source for electric vehicle (EV) applications owing to the solution offered by their high power, high specific energy, no memory effect, and their excellent durability. However, they generate a large amount of heat, particularly during the fast discharge process. Therefore, a suitable thermal management system (TMS) is necessary to guarantee their performance, efficiency, capacity, safety, and lifetime. This study investigates the thermal performance of different passive cooling systems for the LTO Li-ion battery cell/module with the application of natural convection, aluminum (Al) mesh, copper (Cu) mesh, phase change material (PCM), and PCM-graphite. Experimental results show the average temperature of the cell, due to natural convection, Al mesh, Cu mesh, PCM, and PCM-graphite compared with the lack of natural convection decrease by 6.4%, 7.4%, 8.8%, 30%, and 39.3%, respectively. In addition, some numerical simulations and investigations are solved by COMSOL Multiphysics®, for the battery module consisting of 30 cells, which is cooled by PCM and PCM-graphite. The maximum temperature of the battery module compared with the natural convection case study is reduced by 15.1% and 17.3%, respectively. Moreover, increasing the cell spacing in the battery module has a direct effect on temperature reduction
Original languageEnglish
Article number3881
Number of pages15
JournalEnergies
Volume14
Issue number13
DOIs
Publication statusPublished - Jul 2021

Keywords

  • lithium-ion battery
  • thermal management system
  • natural convection
  • aluminum mesh
  • copper mesh
  • phase change material

Fingerprint

Dive into the research topics of 'Comprehensive Passive Thermal Management Systems for Electric Vehicles'. Together they form a unique fingerprint.

Cite this