TY - JOUR
T1 - Contrast agent concentration optimization in CTA using low tube voltage and dual-energy CT in multiple vendors
T2 - a phantom study
AU - van Hamersvelt, Robbert W
AU - Eijsvoogel, Nienke G
AU - Mihl, Casper
AU - de Jong, Pim A
AU - Schilham, Arnold M R
AU - Buls, Nico
AU - Das, Marco
AU - Leiner, Tim
AU - Willemink, Martin J
PY - 2018/8
Y1 - 2018/8
N2 - We investigated the feasibility and extent to which iodine concentration can be reduced in computed tomography angiography imaging of the aorta and coronary arteries using low tube voltage and virtual monochromatic imaging of 3 major dual-energy CT (DECT) vendors. A circulation phantom was imaged with dual source CT (DSCT), gemstone spectral imaging (GSI) and dual-layer spectral detector CT (SDCT). For each scanner, a reference scan was acquired at 120 kVp using routine iodine concentration (300 mg I/ml). Subsequently, scans were acquired at lowest possible tube potential (70, 80, 80 kVp, respectively), and DECT-mode (80/150Sn, 80/140 and 120 kVp, respectively) in arterial phase after administration of iodine (300, 240, 180, 120, 60, 30 mg I/ml). Objective image quality was evaluated using attenuation, CNR and dose corrected CNR (DCCNR) measured in the aorta and left main coronary artery. Average DCCNR at reference was 227.0, 39.7 and 60.2 for DSCT, GSI and SDCT. Maximum iodine concentration reduction without loss of DCCNR was feasible down to 180 mg I/ml (40% reduced) for DSCT (DCCNR 467.1) and GSI (DCCNR 46.1) using conventional CT low kVp, and 120 mg I/ml (60% reduced) for SDCT (DCCNR 171.5) using DECT mode. Low kVp scanning and DECT allows for 40-60% iodine reduction without loss in image quality compared to reference. Optimal scan protocol and to which extent varies per vendor. Further patient studies are needed to extend and translate our findings to clinical practice.
AB - We investigated the feasibility and extent to which iodine concentration can be reduced in computed tomography angiography imaging of the aorta and coronary arteries using low tube voltage and virtual monochromatic imaging of 3 major dual-energy CT (DECT) vendors. A circulation phantom was imaged with dual source CT (DSCT), gemstone spectral imaging (GSI) and dual-layer spectral detector CT (SDCT). For each scanner, a reference scan was acquired at 120 kVp using routine iodine concentration (300 mg I/ml). Subsequently, scans were acquired at lowest possible tube potential (70, 80, 80 kVp, respectively), and DECT-mode (80/150Sn, 80/140 and 120 kVp, respectively) in arterial phase after administration of iodine (300, 240, 180, 120, 60, 30 mg I/ml). Objective image quality was evaluated using attenuation, CNR and dose corrected CNR (DCCNR) measured in the aorta and left main coronary artery. Average DCCNR at reference was 227.0, 39.7 and 60.2 for DSCT, GSI and SDCT. Maximum iodine concentration reduction without loss of DCCNR was feasible down to 180 mg I/ml (40% reduced) for DSCT (DCCNR 467.1) and GSI (DCCNR 46.1) using conventional CT low kVp, and 120 mg I/ml (60% reduced) for SDCT (DCCNR 171.5) using DECT mode. Low kVp scanning and DECT allows for 40-60% iodine reduction without loss in image quality compared to reference. Optimal scan protocol and to which extent varies per vendor. Further patient studies are needed to extend and translate our findings to clinical practice.
KW - Dual-energy CT
KW - Image quality
KW - Iodinated contrast media
KW - Low kVp
KW - Thoracic aorta
UR - http://www.scopus.com/inward/record.url?scp=85042934270&partnerID=8YFLogxK
U2 - 10.1007/s10554-018-1329-x
DO - 10.1007/s10554-018-1329-x
M3 - Article
C2 - 29516228
VL - 34
SP - 1265
EP - 1275
JO - The International Journal of Cardiovascular Imaging
JF - The International Journal of Cardiovascular Imaging
SN - 1569-5794
IS - 8
ER -