Control of dissipative rogue waves in nonlinear cavity optics: Optical injection and time-delayed feedback

Krassimir Panayotov, Mustapha Tlidi, Yufeng Song, Han Zhang

Research output: Contribution to journalArticlepeer-review

16 Citations (Scopus)

Abstract

We investigate and review the formation of two-dimensional dissipative rogue waves in cavity nonlinear optics with transverse effects. Two spatially extended systems are considered for this purpose: the driven Kerr optical cavities subjected to optical injection and the broad-area surface-emitting lasers with a saturable absorber. We also consider a quasi-two-dimensional system (the two dimensions being space and time) of a fiber laser describing the complex cubic-quintic Ginzburg-Landau equation. We show that rogue waves are controllable by means of time-delayed feedback and optical injection. We show that without delayed feedback, transverse structures are stationary or oscillating. However, when the strength of the delayed feedback is increased, all the systems generate giant two-dimensional pulses that appear with low probability and suddenly appear and disappear. We characterize their formation by computing the probability distribution, which shows a long tail. Besides, we have computed the significant wave height, which measures the mean wave height of the highest third of the waves. We show that for all systems, the distribution tails expand beyond two times the significant wave height. Furthermore, we also show that optical injection may suppress the rogue wave formation in a semiconductor laser with a saturable absorber.
Original languageEnglish
Article number053103
Pages (from-to)1-13
Number of pages13
JournalChaos
Volume30
Issue number5
DOIs
Publication statusPublished - May 2020

Keywords

  • SPATIOTEMPORAL CHAOS; PATTERN SELECTION; FIBER LASER; SOLITONS; DISPERSION; DYNAMICS; VCSEL

Fingerprint

Dive into the research topics of 'Control of dissipative rogue waves in nonlinear cavity optics: Optical injection and time-delayed feedback'. Together they form a unique fingerprint.

Cite this