TY - JOUR
T1 - Designer Descemet Membranes Containing PDLLA and Functionalized Gelatins as Corneal Endothelial Scaffold
AU - Van Hoorick, Jasper
AU - Delaey, Jasper
AU - Vercammen, Hendrik
AU - Van Erps, Jürgen
AU - Thienpont, Hugo
AU - Dubruel, Peter
AU - Zakaria, Nadia
AU - Koppen, Carina
AU - Van Vlierberghe, Sandra
AU - Van den Bogerd, Bert
PY - 2020/8
Y1 - 2020/8
N2 - Corneal blindness is the fourth leading cause of visual impairment. Of specific interest is blindness due to a dysfunctional corneal endothelium which can only be treated by transplanting healthy tissue from a deceased donor. Unfortunately, corneal supply does not meet the demand with only one donor for every 70 patients. Therefore, there is a huge interest in tissue engineering of grafts consisting of an ultra-thin scaffold seeded with cultured endothelial cells. The present research describes the fabrication of such artificial Descemet membranes based on the combination of a biodegradable amorphous polyester (poly (d,l-lactic acid)) and crosslinkable gelatins. Four different crosslinkable gelatin derivatives are compared in terms of processing, membrane quality, and function, as well as biological performance in the presence of corneal endothelial cells. The membranes are fabricated through multi-step spincoating, including a sacrificial layer to allow for straightforward membrane detachment after production. As a consequence, ultrathin (<1 mu m), highly transparent (>90%), semi-permeable membranes could be obtained with high biological potential. The membranes supported the characteristic morphology and correct phenotype of corneal endothelial cells while exhibiting similar proliferation rates as the positive control. As a consequence, the proposed membranes prove to be a promising synthetic alternative to donor tissue.
AB - Corneal blindness is the fourth leading cause of visual impairment. Of specific interest is blindness due to a dysfunctional corneal endothelium which can only be treated by transplanting healthy tissue from a deceased donor. Unfortunately, corneal supply does not meet the demand with only one donor for every 70 patients. Therefore, there is a huge interest in tissue engineering of grafts consisting of an ultra-thin scaffold seeded with cultured endothelial cells. The present research describes the fabrication of such artificial Descemet membranes based on the combination of a biodegradable amorphous polyester (poly (d,l-lactic acid)) and crosslinkable gelatins. Four different crosslinkable gelatin derivatives are compared in terms of processing, membrane quality, and function, as well as biological performance in the presence of corneal endothelial cells. The membranes are fabricated through multi-step spincoating, including a sacrificial layer to allow for straightforward membrane detachment after production. As a consequence, ultrathin (<1 mu m), highly transparent (>90%), semi-permeable membranes could be obtained with high biological potential. The membranes supported the characteristic morphology and correct phenotype of corneal endothelial cells while exhibiting similar proliferation rates as the positive control. As a consequence, the proposed membranes prove to be a promising synthetic alternative to donor tissue.
KW - MECHANICAL-PROPERTIES; TRANSPLANTATION; SUBSTRATE; POLYMERIZATION; POLYESTERS; INHIBITOR; HYDROGELS; STIFFNESS; SURFACE; LACTIDE
UR - http://www.scopus.com/inward/record.url?scp=85087289761&partnerID=8YFLogxK
U2 - 10.1002/adhm.202000760
DO - 10.1002/adhm.202000760
M3 - Article
SN - 2192-2640
VL - 9
SP - 1
EP - 16
JO - Advanced Healthcare Materials
JF - Advanced Healthcare Materials
IS - 16
M1 - 2000760
ER -