Detailed analysis of the effective and intra-particle diffusion coefficient of proteins at elevated pressure in columns packed with wide-pore core-shell particles

Leon E. Niezen, Tsukasa Sasaki, Donatela Sadriaj, Harald Ritchie, Ken Broeckhoven, Deirdre Cabooter, Gert Desmet

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

To determine the efficiency that can be obtained in a packed-bed liquid-chromatography column for a particular analyte, a correct determination of the molecular and effective diffusion coefficients (Dm and Deff) of the analyte is required. The latter is usually obtained via peak parking experiments wherein the flow is stopped. As a result, the column pressure rapidly dissipates and the measurement is essentially conducted at ambient pressure. This is problematic for analytes whose retention depends on pressure, such as proteins and potentially other large (dipolar) molecules. In that case, a conventional peak parking experiment is expected to lead to large errors in Deff. To obtain a better estimate ofDeff, the present study reports on the use of a set-up enabling peak parking measurements under pressurized conditions. This approach allowed us to report, for the first time, Deff for proteins at elevated pressure under retained conditions. First, Deff was determined at a (average) pressure of about 105 bar for a set of proteins with varying size, namely: bradykinin, insulin, lysozyme, β-lactoglobulin, and carbonic anhydrase in a column packed with 400 Å core-shell particles. The obtained data were then compared to those of several small analytes: acetophenone, propiophenone, benzophenone, valerophenone, and hexanophenone. A clear trend between Deff and analyte size was observed. The set-up was then used to determine Deff of bradykinin and lysozyme at variable (average) pressures ranging from 28 bar to 430 bar. These experiments showed a decrease in intra-particle and surface diffusion with pressure, which was larger for lysozyme than bradykinin. The data show that pressurized peak parking experiments are vital to correctly determine Deff when the analyte retention varies significantly with pressure.

Original languageEnglish
Article number464538
Number of pages12
JournalJournal of Chromatography A
Volume1713
DOIs
Publication statusPublished - 4 Jan 2024

Bibliographical note

Funding Information:
D.S. is funded by the Research Foundation Flanders (research project: G058321N ).

Publisher Copyright:
© 2023 Elsevier B.V.

Keywords

  • Band broadening
  • Biomolecules
  • Longitudinal and surface diffusion
  • Macromolecules
  • Superficially porous particles

Fingerprint

Dive into the research topics of 'Detailed analysis of the effective and intra-particle diffusion coefficient of proteins at elevated pressure in columns packed with wide-pore core-shell particles'. Together they form a unique fingerprint.

Cite this