Development of early age autogenous and thermal strains of alkali-activated slag-fly ash pastes

Maïté Lacante, Brice Delsaute, Julie Gambacorta, Markus Königsberger, Stéphanie Staquet

Research output: Contribution to journalArticlepeer-review

6 Citations (Scopus)

Abstract

Replacing ordinary Portland cement-based materials with alkali-activated industrial wastes is often limited because of significant volume changes occurring in these materials at early age. This experimental study aims to quantify the extent of the volume changes and explore the underlying mechanisms of pastes composed of slag and fly ash (ratio 50:50) which are activated by sodium hydroxide and sodium silicate. Eight compositions were tested, with silica modulus (Ms) varying between 1.04 and 1.58 and with solution-to-binder ratios (S/B) varying between 0.47 and 0.70. Specimen length changes in sealed conditions are monitored by applying repeated thermal variations in an adapted AutoShrink device and are accompanied by isothermal calorimetry, uniaxial compressive strength, and internal relative humidity (IRH) tests. This way, the temporal evolutions of autogenous strains, the coefficient of thermal expansion (CTE), the heat release, the apparent activation energy (Ea), the IRH and the strength are determined and compared to each other. Both the measured autogenous shrinkage and CTEs are rather large; they amount to 4,000–5,000 μm/m and roughly 40 μm/m/°C, respectively, at material ages of 2 weeks. An increase in S/B leads to a decrease in autogenous shrinkage and an increase in CTE. An increase in the Ms causes a decrease in both the autogenous shrinkage and the CTE. Most strikingly, autogenous shrinkage evolves linearly with the cumulative heat released by the binders. The IRH remains continuously above 94% during the first 2 weeks. The apparent activation energy amounts to roughly 74 kJ/mol and is virtually unaffected by S/B and Ms.
Original languageEnglish
Article number1085912
Pages (from-to)1-16
Number of pages <span style="color:red"p> <font size="1.5"> ✽ </span> </font>16
JournalFrontiers in Built environment
Volume8
DOIs
Publication statusPublished - 6 Dec 2022
Externally publishedYes

Bibliographical note

Funding Information:
This paper is the result of research actions performed in the framework of the FNRS-FWO-EOS project 30439691 ‘INTERdisciplinary multiscale Assessment of a new generation of Concrete with alkali-activated maTerials’ ( https://interact.ulb.be/ ). The financial support by FNRS-FWO-EOS is gratefully acknowledged. The authors acknowledge TU Wien Bibliothek for financial support through its Open Access Funding Programme.

Publisher Copyright:
Copyright © 2022 Lacante, Delsaute, Gambacorta, Königsberger and Staquet.

Fingerprint

Dive into the research topics of 'Development of early age autogenous and thermal strains of alkali-activated slag-fly ash pastes'. Together they form a unique fingerprint.

Cite this