Electrochemical Fabrication of Ternary Black Ti-Mo-Ni Oxide Nanotube Arrays for Enhanced Photoelectrochemical Water Oxidation

Nourhan M. Deyab, Kholoud E. Salem, Abdelrahman M. Mokhtar, Mohamed Ramadan, Patrick Steegstra, Annick Hubin, Marie Paule Delplancke, Hubert Rahier, Nageh K. Allam

Research output: Contribution to journalArticlepeer-review

7 Citations (Scopus)
69 Downloads (Pure)

Abstract

Point defects play important and crucial roles in the design of high performance photocatalysts. We report on the electrochemical fabrication of black Ti−Mo-Ni−O nanotubes as a promising electrode material for solar-assisted water splitting. The ternary Ti−Mo-Ni−O catalyst was annealed in hydrogen atmosphere to induce point defects in the material to enhance its conductivity, charge carriers density, and performance. The effect of annealing duration on the performance of ternary Ti−Mo-Ni−O nanotube films was investigated. The hydrogen-annealed nanotubes showed enhanced optical characteristics in the visible spectrum, which can be related to the formation of defect states upon hydrogen annealing. The 10 h-annealed sample showed an exceptionally enhanced photocurrent density of ∼10 mA/cm2 with a remarkable open-circuit voltage of ∼−1.0 VAg/AgCl under AM 1.5G illumination. This improved photocurrent is in agreement with the obtained 75 % incident-photon-to-current-conversion-efficiency (IPCE), confirming the improved photoactivity of the hydrogen-treated mixed oxide nanotubes.

Original languageEnglish
Pages (from-to)12151-12158
Number of pages8
JournalChemistrySelect
Volume5
Issue number39
DOIs
Publication statusPublished - 22 Oct 2020

Keywords

  • oxygen vacancies
  • photoelectrochemical cell
  • solar energy conversion
  • ternary photocatalyst
  • water splitting

Fingerprint

Dive into the research topics of 'Electrochemical Fabrication of Ternary Black Ti-Mo-Ni Oxide Nanotube Arrays for Enhanced Photoelectrochemical Water Oxidation'. Together they form a unique fingerprint.

Cite this