Abstract
Post-transcriptional modifications on transfer RNA (tRNA) molecules occur frequently but their implication on the translational regulation is only recently becoming fully appreciated. Several tRNA molecules in the eukaryotic cytoplasm carry a methoxycarbonylmethyl (mcm) or carbamoylmethyl (ncm) group on their wobble uridine to ensure the efficient and reliable decoding of A- or G-ending codons. Evidence suggests that the six subunits of the conserved Elongator complex are all required for an early step in the synthesis of the mcm and ncm groups in Saccharomyces cerevisiae as well as in Caenorhabditis elegans. In this issue of Molecular Microbiology, Mehlgarten et al. convincingly show that the tRNA-modifying role of Elongator is also conserved in the plant Arabidopsis thaliana. Moreover, combinations of subunits of the Arabidopsis Elongator complex can structurally and functionally complement deletion mutants in yeast and substitute for the tRNA modification activity. The data suggest that Elongator might be a unique multitasking complex with at least two conserved roles in all eukaryotes, i.e. transcriptional activation via histone acetylation in the nucleus and translational control through tRNA modification in the cytoplasm.
Original language | English |
---|---|
Pages (from-to) | 1065-1069 |
Number of pages | 5 |
Journal | Mol. Microbiol. |
Volume | 75 |
Publication status | Published - 1 Jun 2010 |
Keywords
- Elongator
- Review