Projects per year
Abstract
This paper introduces an efficient patch-based computational module, coined Entropy-based Patch Encoder (EPE) module, for resource-constrained semantic segmentation. The EPE module consists of three lightweight fully-convolutional encoders, each extracting features from image patches with a different amount of entropy. Patches with high entropy are being processed by the encoder with the largest number of parameters, patches with moderate entropy are processed by the encoder with a moderate number of parameters, and patches with low entropy are processed by the smallest encoder. The intuition behind the module is the following: as patches with high entropy contain more information, they need an encoder with more parameters, unlike low entropy patches, which can be processed using a small encoder. Consequently, processing part of the patches via the smaller encoder can significantly reduce the computational cost of the module. Experiments show that EPE can boost the performance of existing real-time semantic segmentation models with a slight increase in the computational cost. Specifically, EPE increases the mIOU performance of DFANet A by 0.9% with only 1.2% increase in the number of parameters and the mIOU performance of EDANet by 1% with 10% increase of the model parameters.
Original language | English |
---|---|
Title of host publication | IEEE International Conference on Image Processing (ICIP), 2022 |
Publisher | IEEE |
Pages | 1-5 |
Number of pages | 5 |
Publication status | Published - 2022 |
Event | 2022 IEEE International Conference on Image Processing (ICIP 2022) - Bordeaux, France, Bordeaux, France Duration: 16 Oct 2022 → 19 Oct 2022 https://2022.ieeeicip.org/ |
Conference
Conference | 2022 IEEE International Conference on Image Processing (ICIP 2022) |
---|---|
Country/Territory | France |
City | Bordeaux |
Period | 16/10/22 → 19/10/22 |
Internet address |
Fingerprint
Dive into the research topics of 'Entropy-Based Feature Extraction for Real-Time Semantic Segmentation'. Together they form a unique fingerprint.Projects
- 2 Finished
-
FWOAL883: Video Processing for Multiview Multimodal Camera Systems
Deligiannis, N. & Philips, W.
1/01/18 → 31/12/21
Project: Fundamental
-
SRP11: Strategic Research Programme: Processing of large scale multi-dimensional, multi-spectral, multi-sensorial and distributed data (M³D²)
Schelkens, P., Deligiannis, N., Jansen, B., Kuijk, M., Munteanu, A., Sahli, H., Steenhaut, K., Stiens, J., Schelkens, P., Cornelis, J. P., Kuijk, M., Munteanu, A., Sahli, H., Stiens, J. & Vounckx, R.
1/11/12 → 31/12/23
Project: Fundamental