Field Theory on Curved Noncommutative Spacetimes

Alexander Schenkel, Christoph F. Uhlemann

Research output: Contribution to journalArticlepeer-review

8 Downloads (Pure)

Abstract

We study classical scalar field theories on noncommutative curved spacetimes. Following the approach of Wess et al. [Classical Quantum Gravity 22 (2005), 3511 and Classical Quantum Gravity 23 (2006), 1883], we describe noncommutative spacetimes by using (Abelian) Drinfel'd twists and the associated *-products and *-differential geometry. In particular, we allow for position dependent noncommutativity and do not restrict ourselves to the Moyal-Weyl deformation. We construct action functionals for real scalar fields on noncommutative curved spacetimes, and derive the corresponding deformed wave equations. We provide explicit examples of deformed Klein-Gordon operators for noncommutative Minkowski, de Sitter, Schwarzschild and Randall-Sundrum spacetimes, which solve the noncommutative Einstein equations. We study the construction of deformed Green's functions and provide a diagrammatic approach for their perturbative calculation. The leading noncommutative corrections to the Green's functions for our examples are derived.
Original languageEnglish
Number of pages19
JournalSIGMA
Volume6
Issue number061
DOIs
Publication statusPublished - 16 Mar 2010

Bibliographical note

SIGMA Special Issue on Noncommutative Spaces and Fields

Keywords

  • hep-th
  • gr-qc
  • math-ph
  • math.MP
  • 81T75, 83C65, 53D55

Fingerprint

Dive into the research topics of 'Field Theory on Curved Noncommutative Spacetimes'. Together they form a unique fingerprint.

Cite this