Intraportal (IP) islet cell transplants can restore metabolic control in type 1 diabetes patients, but limitations raise the need for establishing a functional beta cell mass (FBM) in a confined extrahepatic site. This study reports on function and composition of omental (OM) implants after placement of islet cell grafts with similar beta cell mass as in our IP-protocol (2-5.106 beta cells/kg body weight) on a scaffold. Four of seven C-peptide-negative recipients achieved low beta cell function (hyperglycemic clamp [HGC] 2-8 percent of controls) until laparoscopy, 2-6 months later, for OM-biopsy and concomitant IP-transplant with similar beta cell dose. This IP-transplant increased HGC-values to 15-40 percent. OM-biopsies reflected the composition of initial grafts, exhibiting varying proportions of endocrine-cell-enriched clusters with more beta than alpha cells and leucocyte pole, non-endocrine cytokeratin-positive clusters surrounded by leucocytes, and scaffold remnants with foreign body reaction. OM-implants on a polyglactin-thrombin-fibrinogen-scaffold presented larger endocrine clusters with infiltrating endothelial cells and corresponded to the higher HGC-values. No activation of cellular immunity to GAD/IA2 was measured post-OM-transplant. Establishment of a metabolically adequate FBM in omentum may require a higher beta cell number in grafts but also elimination of their immunogenic non-endocrine components as well as local conditioning that favors endocrine cell engraftment and function.

Original languageEnglish
Pages (from-to)927-936
Number of pages10
JournalAmerican Journal of Transplantation
Issue number3
Early online date4 Nov 2021
Publication statusPublished - Mar 2022

Bibliographical note

© 2021 The American Society of Transplantation and the American Society of Transplant Surgeons.


Dive into the research topics of 'Function and composition of pancreatic islet cell implants in omentum of type 1 diabetes patients'. Together they form a unique fingerprint.

Cite this