Projects per year
Abstract
Signal denoising is an important problem with a vast literature. Recently, signal denoising on graphs has received a lot of attention due to the increasing use of graph-structured signals. However, well-etablished signal denoising methods do not generalize to graph signals with irregular structures, while existing graph denoising methods do not capture well the abstract representations inherent in the signals. To bridge this gap, we propose to use graph convolutional neural network with a Kron-reduction-based pooling operator for denoising on graphs. The proposed model can effectively capture the irregular data structure and learn the underlying representations in the signals, leading to improved performance over existing methods in experiments involving real-world traffic signals.
Original language | English |
---|---|
Title of host publication | 2020 IEEE International Conference on Acoustics, Speech and Signal Processing |
Publisher | IEEE |
Pages | 3322-3326 |
Number of pages | 5 |
ISBN (Electronic) | 9781509066315 |
DOIs | |
Publication status | Published - 14 May 2020 |
Event | 2020 IEEE International Conference on Acoustics, Speech and Signal Processing - Barcelona, Spain Duration: 4 May 2020 → 8 May 2020 |
Publication series
Name | ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings |
---|---|
Volume | 2020-May |
ISSN (Print) | 1520-6149 |
Conference
Conference | 2020 IEEE International Conference on Acoustics, Speech and Signal Processing |
---|---|
Abbreviated title | ICASSP 2020 |
Country/Territory | Spain |
City | Barcelona |
Period | 4/05/20 → 8/05/20 |
Keywords
- graph signal denoising
- graph autoencoders
- graph neural networks
- geometric deep learning
Fingerprint
Dive into the research topics of 'Graph Auto-encoder For Graph Signal Denoising'. Together they form a unique fingerprint.Projects
- 1 Finished
-
SRP11: Strategic Research Programme: Processing of large scale multi-dimensional, multi-spectral, multi-sensorial and distributed data (M³D²)
Schelkens, P., Deligiannis, N., Jansen, B., Kuijk, M., Munteanu, A., Sahli, H., Steenhaut, K., Stiens, J., Schelkens, P., Cornelis, J. P., Kuijk, M., Munteanu, A., Sahli, H., Stiens, J. & Vounckx, R.
1/11/12 → 31/12/23
Project: Fundamental