Projects per year
Abstract
Humins waste valorization is considered to be an essential pathway to improve the economic viability of many biorefinery processes and further promote their circularity by avoiding waste formation. In this research, the incorporation of humins in a Diels–Alder (DA) polymer network based on furan-maleimide thermoreversible crosslinks was studied. A considerable enhancement of the healing efficiency was observed by just healing for 1 h at 60◦C at the expense of a reduction of the material mechanical properties, while the unfilled material showed no healing under the same conditions. Nevertheless, the thermal healing step favored the irreversible humins polycondensation, thus strengthening the material while keeping the enhanced healing performance. Our hypothesis states a synergistic healing mechanism based on humins flowing throughout the damage, followed by thermal humins crosslinking during the healing trigger, together with DA thermoreversible bonds recombination. A multi-material soft robotic gripper was manufactured out of the proposed material, showing not only improved recovery of the functional performance upon healing but also stiffness-tunable features by means of humins thermal crosslinking. For the first time, both damage healing and zone reinforcement for further damage prevention are achieved in a single intrinsic self-healing system.
Original language | English |
---|---|
Article number | 1657 |
Pages (from-to) | 1-19 |
Number of pages | 19 |
Journal | Polymers (Basel) |
Volume | 14 |
Issue number | 9 |
DOIs | |
Publication status | Published - May 2022 |
Bibliographical note
Funding Information:This research was funded by the Research Foundation Flanders (FWO-Vlaanderen): FWO SBO Project AMSeR (G028218N), the Predoctoral Fellowship of Ellen Roels (1S84122N), and the Postdoctoral Fellowship of Joost Brancart (12W4719N).
Funding Information:
Funding: This research was funded by the Research Foundation Flanders (FWO-Vlaanderen): FWO SBO Project AMSeR (G028218N), the Predoctoral Fellowship of Ellen Roels (1S84122N), and the Postdoctoral Fellowship of Joost Brancart (12W4719N).
Publisher Copyright:
© 2022 by the authors. Licensee MDPI, Basel, Switzerland.
Fingerprint
Dive into the research topics of 'Humins Blending in Thermoreversible Diels-Alder Networks for Stiffness Tuning and Enhanced Healing Performance for Soft Robotics'. Together they form a unique fingerprint.Projects
- 2 Finished
-
OZR3768: OZR Backup mandate: Double and triple dynamic polymer network architectures for multi-stimuli-responsive materials
1/10/21 → 30/09/23
Project: Fundamental
-
FWOAL873: Additive Manufacturing for Self-Healing Robotics
Van Assche, G., Vanderborght, B., Van Puyvelde, P., Brancart, J., Safaei, A. & Terryn, S.
1/01/18 → 31/12/21
Project: Fundamental