IceCube-Gen2: The Window to the Extreme Universe

IceCube-Gen2 Collaboration, Pablo Correa Camiroaga, Catherine De Clercq, Simon De Kockere, Krijn De Vries, Gwenhaël Laure De Wasseige, Jan Lünemann, Giuliano Alexander Maggi Olmedo, Nicolaas Van Eijndhoven, Tim Huege

Research output: Contribution to journalArticlepeer-review

134 Citations (Scopus)
74 Downloads (Pure)


The observation of electromagnetic radiation from radio to $\gamma$-ray wavelengths has provided a wealth of information about the universe. However, at PeV (10$^{15}$ eV) energies and above, most of the universe is impenetrable to photons. New messengers, namely cosmic neutrinos, are needed to explore the most extreme environments of the universe where black holes, neutron stars, and stellar explosions transform gravitational energy into non-thermal cosmic rays. The discovery of cosmic neutrinos with IceCube has opened this new window on the universe. In this white paper, we present an overview of a next-generation instrument, IceCube-Gen2, which will sharpen our understanding of the processes and environments that govern the universe at the highest energies. IceCube-Gen2 is designed to: 1) Resolve the high-energy neutrino sky from TeV to EeV energies; 2) Investigate cosmic particle acceleration through multi-messenger observations; 3) Reveal the sources and propagation of the highest energy particles in the universe; 4) Probe fundamental physics with high-energy neutrinos. IceCube-Gen2 will increase the annual rate of observed cosmic neutrinos by a factor of ten compared to IceCube, and will be able to detect sources five times fainter than its predecessor. Furthermore, through the addition of a radio array, IceCube-Gen2 will extend the energy range by several orders of magnitude compared to IceCube. Construction will take 8 years and cost about \$350M. The goal is to have IceCube-Gen2 fully operational by 2033. IceCube-Gen2 will play an essential role in shaping the new era of multi-messenger astronomy, fundamentally advancing our knowledge of the high-energy universe. This challenging mission can be fully addressed only in concert with the new survey instruments across the electromagnetic spectrum and gravitational wave detectors which will be available in the coming years.
Original languageEnglish
Article number060501
Number of pages93
JournalJournal of Physics G: Nuclear and Particle Physics
Issue number6
Publication statusPublished - Jun 2021

Bibliographical note

56 pages, 29 figures


  • astro-ph.HE


Dive into the research topics of 'IceCube-Gen2: The Window to the Extreme Universe'. Together they form a unique fingerprint.

Cite this