Projects per year
Abstract
IL1β is a central mediator of inflammation. Secretion of IL1β typically requires proteolytic maturation by the inflammasome and formation of membrane pores by gasdermin D (GSDMD). Emerging evidence suggests an important role for IL1β in promoting cancer progression in patients, but the underlying mechanisms are ill-defined. Here, we have shown a key role for IL1β in driving tumor progression in two distinct mouse tumor models. Notably, activation of the inflammasome, caspase-8, as well as the pore-forming proteins GSDMD and mixed lineage kinase domain-like protein in the host were dispensable for the release of intratumoral bioactive IL1β. Inflammasome-independent IL1β release promoted systemic neutrophil expansion and fostered accumulation of T-cell-suppressive neutrophils in the tumor. Moreover, IL1β was essential for neutrophil infiltration triggered by antiangiogenic therapy, thereby contributing to treatment-induced immunosuppression. Deletion of IL1β allowed intratumoral accumulation of CD8+ effector T cells that subsequently activated tumor-associated macrophages. Depletion of either CD8+ T cells or macrophages abolished tumor growth inhibition in IL1β-deficient mice, demonstrating a crucial role for CD8+ T-cell-macrophage cross-talk in the antitumor immune response. Overall, these results support a tumor-promoting role for IL1β through establishing an immunosuppressive microenvironment and show that inflammasome activation is not essential for release of this cytokine in tumors.
Original language | English |
---|---|
Pages (from-to) | 309-323 |
Number of pages | 15 |
Journal | Cancer Immunology Research |
Volume | 9 |
Issue number | 3 |
Early online date | 23 Dec 2020 |
DOIs | |
Publication status | Published - Mar 2021 |
Bibliographical note
©2020 American Association for Cancer Research.Fingerprint
Dive into the research topics of 'IL1β Promotes Immune Suppression in the Tumor Microenvironment Independent of the Inflammasome and Gasdermin D'. Together they form a unique fingerprint.Projects
- 1 Finished
-
SRP47: Strategic Research Programme: Molecular Imaging and targeting of macrophages in Inflammation (ITARMI)
Lahoutte, T., Van Ginderachter, J., Devoogdt, N. & De Jonge, J.
1/11/17 → 31/10/22
Project: Fundamental