Projects per year
Abstract
1 Image Analysis: Intermediate Level Vision 3
Jan Cornelis, Aneta Markova and Rudi Deklerck
1.1 Introduction: Segmentation defined in the context of intermediate level vision
3
1.2 Pixel and Regionbased
segmentation 5
1.2.1 Examples of supervised approaches 6
1.2.2 Examples of unsupervised approaches 7
1.2.3 Improving the connectivity of the classification results 10
1.3 Edgebased
Segmentation 11
1.4 Deformable models 15
1.4.1 Mathematical Formulation (Continuous case) 16
1.4.2 Mathematical Formulation (The discrete case) 18
1.4.3 Applications of active contours 20
1.4.4 The behaviour of snakes 21
1.5 Modelbased
Segmentation 24
1.5.1 Statistical Labeling 24
1.5.2 Bayesian Decision Theory 24
1.5.3 Graphs and Markov Random Fields defined on a graph 25
1.5.4 Cliques 26
1.5.5 Models for the priors 26
1.5.6 Labeling in a Bayesian framework based onMarkov Random fieldmodelling 27
1.5.7 Examples 27
Jan Cornelis, Aneta Markova and Rudi Deklerck
1.1 Introduction: Segmentation defined in the context of intermediate level vision
3
1.2 Pixel and Regionbased
segmentation 5
1.2.1 Examples of supervised approaches 6
1.2.2 Examples of unsupervised approaches 7
1.2.3 Improving the connectivity of the classification results 10
1.3 Edgebased
Segmentation 11
1.4 Deformable models 15
1.4.1 Mathematical Formulation (Continuous case) 16
1.4.2 Mathematical Formulation (The discrete case) 18
1.4.3 Applications of active contours 20
1.4.4 The behaviour of snakes 21
1.5 Modelbased
Segmentation 24
1.5.1 Statistical Labeling 24
1.5.2 Bayesian Decision Theory 24
1.5.3 Graphs and Markov Random Fields defined on a graph 25
1.5.4 Cliques 26
1.5.5 Models for the priors 26
1.5.6 Labeling in a Bayesian framework based onMarkov Random fieldmodelling 27
1.5.7 Examples 27
Original language | English |
---|---|
Title of host publication | Optical Digital Image Processing, |
Editors | G. Cristobal, P. Schelkens, H. Thienpont |
Publisher | Blackwell-Wiley |
Pages | 643-666 |
Number of pages | 24 |
ISBN (Print) | 978-3-527-40956-3 |
Publication status | Published - Apr 2011 |
Bibliographical note
G. Cristobal, P. Schelkens, H. ThienpontKeywords
- Image Analysis
- Image segmentation
- Intermediate Level Vision
- Markov Random Fields
Fingerprint
Dive into the research topics of 'Image Analysis: Intermediate-Level Vision'. Together they form a unique fingerprint.-
IBBT32: ISBO : oa Terra, NEXTgen HD, SenseMAP, Schrecs
Munteanu, A., Verhelst, W., Deklerck, R., Barbarien, J., Dooms, A., Jansen, B. & Schelkens, P.
1/09/09 → …
Project: Applied
-
HOA14: Quantitative imaging with dynamic contrast CT-applications in tumor models in small animals.
De Mey, J., Nyssen, E., Bossuyt, A. & Deklerck, R.
1/01/07 → 31/12/10
Project: Fundamental
-
FWOAL390: Quantative measure of cancer treatment response using automated segmentation on volumetric and dynamic contrast enhanced CT-images in combination with pet.
Deklerck, R., Verellen, D., Storme, G., Nyssen, E. & Everaert, H.
1/01/06 → 31/12/09
Project: Fundamental