TY - JOUR
T1 - Impact of measurement error and limited data frequency on parameter estimation and uncertainty quantification
AU - Khorashadi Zadeh, Farkhondeh
AU - Nossent, Jiri
AU - Woldegiorgis, Befekadu Taddesse
AU - Bauwens, Willy
AU - van Griensven, Ann
PY - 2019/8/1
Y1 - 2019/8/1
N2 - Parameter estimation, using historical observed data, is an important part of the environmental modeling. The uncertainty in the parameter estimation limits the applications of environmental models. In this paper, the influence of limited and uncertain calibrated data on the performance of the parameter estimation are systematically investigated. For this purpose, synthetic observations with a given uncertainty and frequency are used to estimate the model parameters of a conceptual water quality (WQ) model of the River Zenne, Belgium. Bayesian inference using Markov Chain Monte Carlo sampling is adopted to simultaneously perform the automatic calibration and the uncertainty analysis. The results highlight the critical roles of measurement frequency and uncertainty in the model calibration. We found that the effect of the measurement uncertainty on the parameter estimation is significant when the calibrated data points are limited (e.g. monthly data). The research findings can be used to support measurement prioritization and resource allocation.
AB - Parameter estimation, using historical observed data, is an important part of the environmental modeling. The uncertainty in the parameter estimation limits the applications of environmental models. In this paper, the influence of limited and uncertain calibrated data on the performance of the parameter estimation are systematically investigated. For this purpose, synthetic observations with a given uncertainty and frequency are used to estimate the model parameters of a conceptual water quality (WQ) model of the River Zenne, Belgium. Bayesian inference using Markov Chain Monte Carlo sampling is adopted to simultaneously perform the automatic calibration and the uncertainty analysis. The results highlight the critical roles of measurement frequency and uncertainty in the model calibration. We found that the effect of the measurement uncertainty on the parameter estimation is significant when the calibrated data points are limited (e.g. monthly data). The research findings can be used to support measurement prioritization and resource allocation.
KW - DREAM
KW - Measurement frequency
KW - Measurement uncertainty
KW - Parameter estimation
KW - Parameter uncertainty
KW - Simulation uncertainty
UR - http://www.scopus.com/inward/record.url?scp=85064178924&partnerID=8YFLogxK
U2 - 10.1016/j.envsoft.2019.03.022
DO - 10.1016/j.envsoft.2019.03.022
M3 - Article
AN - SCOPUS:85064178924
VL - 118
SP - 35
EP - 47
JO - Environmental Modelling & Software
JF - Environmental Modelling & Software
SN - 1364-8152
ER -