Abstract
Kernel-based modelling of dynamical systems offers important advantages such as imposing stability, causality and smoothness on the estimate of the model. Here, we improve the existing frequency domain kernel-based approach for estimating the transfer function of a linear time-invariant system from noisy data. This is done by introducing prior knowledge in the kernel. We use a local rational modelling technique to determine the most significant poles, and include these poles as prior knowledge in the kernel. This results in accurate models for the identification of lightly-damped systems.
Original language | English |
---|---|
Pages (from-to) | 559-564 |
Number of pages | 6 |
Journal | IFAC-PapersOnLine |
Volume | 54 |
Issue number | 7 |
DOIs | |
Publication status | Published - 1 Jul 2021 |
Keywords
- Data-driven modelling
- kernel-based
- Gaussian process regression
- machine learning
- lightly damped systems
- local rational modelling