TY - JOUR
T1 - Integrative taxonomy of root-knot nematodes reveals multiple independent origins of mitotic parthenogenesis
AU - Raaijmakers, Anke
AU - Jacobs, Lotte
AU - Rayyan, Maissa
AU - Van Tienoven, Theun Pieter
AU - Ortibus, Els
AU - Levtchenko, Elena
AU - Staessen, Jan A
AU - Allegaert, Karel
PY - 2017/3/3
Y1 - 2017/3/3
N2 - Aim
To investigate growth patterns and anthropometrics in former extremely low birth weight (ELBW, <1000 g) children and link these outcomes to neurocognition and body composition in childhood.
Methods
ELBW children were examined at birth (n = 140), at 9 and 24 months (n≥96) and at approximately 11 years within the framework of the PREMATCH (PREMATurity as predictor children’s of Cardiovascular and renal Health) case–control (n = 93–87) study. Regional growth charts were used to convert anthropometrics into Z–scores. Catch–up growth in the first two years of life was qualified as present if ΔZ–score >0.67 SDS. At 11 years, anthropometrics, neurocognitive performance, body composition, grip strength and puberty scores were assessed.
Results
ELBW neonates displayed extra–uterine growth restriction with mean Z–scores for height, weight and head circumference of –0.77, –0.93 and –0.46 at birth, –1.61, –1.67 and –0.72 at 9 months, –1.22, –1.61 and –0.84 at 24 months, and –0.42, –0.49 and –1.09 at 11 years. ELBW children performed consistently worse on neurocognitive testing with an average intelligence quotient equivalent at 11 years of 92.5 (SD 13.1). Catch–up growth was not associated with neurocognitive performance. Compared to controls, ELBW cases had lower grip strength (13.6 vs. 15.9 kg) and percentage lean body weight (75.1 vs. 80.5%), but higher body fat (24.6 vs. 19.2%) and advanced puberty scores at 11 years (all P≤0.025). Catch–up growth for weight and height in the first two years of life in cases was associated with a lower percentage body fat compared to cases without catch–up growth (16.8% catch-up growth for weight vs. 25.7%, P<0.001; 20.9% catch-up for height vs. 25.8%, P = 0.049).
Conclusions
In young adolescence, former ELBW children still have difficulties to reach their target height. Compared to normal birth weight controls, ELBW adolescents show lower neurocognitive performance and grip strength and a higher percentage body fat, a potential risk factor for adverse health outcomes in adulthood. Our key finding is that catch–up growth in ELBW children in the first two years of life is associated with a lower percentage body fat and is therefore likely to be beneficial.
AB - Aim
To investigate growth patterns and anthropometrics in former extremely low birth weight (ELBW, <1000 g) children and link these outcomes to neurocognition and body composition in childhood.
Methods
ELBW children were examined at birth (n = 140), at 9 and 24 months (n≥96) and at approximately 11 years within the framework of the PREMATCH (PREMATurity as predictor children’s of Cardiovascular and renal Health) case–control (n = 93–87) study. Regional growth charts were used to convert anthropometrics into Z–scores. Catch–up growth in the first two years of life was qualified as present if ΔZ–score >0.67 SDS. At 11 years, anthropometrics, neurocognitive performance, body composition, grip strength and puberty scores were assessed.
Results
ELBW neonates displayed extra–uterine growth restriction with mean Z–scores for height, weight and head circumference of –0.77, –0.93 and –0.46 at birth, –1.61, –1.67 and –0.72 at 9 months, –1.22, –1.61 and –0.84 at 24 months, and –0.42, –0.49 and –1.09 at 11 years. ELBW children performed consistently worse on neurocognitive testing with an average intelligence quotient equivalent at 11 years of 92.5 (SD 13.1). Catch–up growth was not associated with neurocognitive performance. Compared to controls, ELBW cases had lower grip strength (13.6 vs. 15.9 kg) and percentage lean body weight (75.1 vs. 80.5%), but higher body fat (24.6 vs. 19.2%) and advanced puberty scores at 11 years (all P≤0.025). Catch–up growth for weight and height in the first two years of life in cases was associated with a lower percentage body fat compared to cases without catch–up growth (16.8% catch-up growth for weight vs. 25.7%, P<0.001; 20.9% catch-up for height vs. 25.8%, P = 0.049).
Conclusions
In young adolescence, former ELBW children still have difficulties to reach their target height. Compared to normal birth weight controls, ELBW adolescents show lower neurocognitive performance and grip strength and a higher percentage body fat, a potential risk factor for adverse health outcomes in adulthood. Our key finding is that catch–up growth in ELBW children in the first two years of life is associated with a lower percentage body fat and is therefore likely to be beneficial.
KW - Animals
KW - Classification
KW - Coffea/parasitology
KW - Cyclooxygenase 1/genetics
KW - DNA, Mitochondrial/genetics
KW - Evolution, Molecular
KW - Genetic Variation
KW - Phylogeny
KW - Plant Roots/parasitology
KW - Species Specificity
KW - Tanzania
KW - Tylenchida/genetics
UR - http://www.scopus.com/inward/record.url?scp=85014924760&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0172190
DO - 10.1371/journal.pone.0172190
M3 - Article
VL - 12
SP - e0173349
JO - PLoS ONE
JF - PLoS ONE
SN - 1932-6203
IS - 3
M1 - e0173349
ER -