Ischaemic preconditioning blunts exercise-induced mitochondrial dysfunction, speeds oxygen uptake kinetics but does not alter severe-intensity exercise capacity

Donald L Peden, Emma A Mitchell, Stephen J Bailey, Richard A Ferguson

Research output: Contribution to journalArticlepeer-review

5 Citations (Scopus)

Abstract

NEW FINDINGS: What is the central question of this study? Ischaemic preconditioning is a novel pre-exercise priming strategy. We asked whether ischaemic preconditioning would alter mitochondrial respiratory function and pulmonary oxygen uptake kinetics and improve severe-intensity exercise performance. What is the main finding and its importance? Ischaemic preconditioning expedited overall pulmonary oxygen uptake kinetics and appeared to prevent an increase in leak respiration, proportional to maximal electron transfer system and ADP-stimulated respiration, that was evoked by severe-intensity exercise in sham-control conditions. However, severe-intensity exercise performance was not improved. The results do not support ischaemic preconditioning as a pre-exercise strategy to improve exercise performance in recreationally active participants.

ABSTRACT: We examined the effect of ischaemic preconditioning (IPC) on severe-intensity exercise performance, pulmonary oxygen uptake ( V ̇ O 2 ${\dot V_{{{\rm{O}}_{\rm{2}}}}}$ ) kinetics, skeletal muscle oxygenation (muscle tissue O2 saturation index) and mitochondrial respiration. Eight men underwent contralateral IPC (4 × 5 min at 220 mmHg) or sham-control (SHAM; 20 mmHg) before performing a cycling time-to-exhaustion test (92% maximum aerobic power). Muscle (vastus lateralis) biopsies were obtained before IPC or SHAM and ∼1.5 min postexercise. The time to exhaustion did not differ between SHAM and IPC (249 ± 37 vs. 240 ± 32 s; P = 0.62). Pre- and postexercise ADP-stimulated (P) and maximal (E) mitochondrial respiration through protein complexes (C) I, II and IV did not differ (P > 0.05). Complex I leak respiration was greater postexercise compared with baseline in SHAM, but not in IPC, when normalized to wet mass (P = 0.01 vs. P = 0.19), mitochondrial content (citrate synthase activity, P = 0.003 vs. P = 0.16; CI+IIP, P = 0.03 vs. P = 0.23) and expressed relative to P (P = 0.006 vs. P = 0.30) and E (P = 0.004 vs. P = 0.26). The V ̇ O 2 ${\dot V_{{{\rm{O}}_{\rm{2}}}}}$ mean response time was faster (51.3 ± 15.5 vs. 63.7 ± 14.5 s; P = 0.003), with a smaller slow component (270 ± 105 vs. 377 ± 188 ml min-1 ; P = 0.03), in IPC compared with SHAM. The muscle tissue O2 saturation index did not differ between trials (P > 0.05). Ischaemic preconditioning expedited V ̇ O 2 ${\dot V_{{{\rm{O}}_{\rm{2}}}}}$ kinetics and appeared to prevent an increase in leak respiration through CI, when expressed proportional to E and P evoked by severe-intensity exercise, but did not improve exercise performance.

Original languageEnglish
Pages (from-to)1241-1254
Number of pages14
JournalExperimental Physiology
Volume107
Issue number11
DOIs
Publication statusPublished - Nov 2022

Keywords

  • Humans
  • Male
  • Adenosine Diphosphate
  • Exercise Tolerance
  • Ischemic Preconditioning/methods
  • Mitochondria/metabolism
  • Muscle, Skeletal/physiology
  • Oxygen/metabolism
  • Oxygen Consumption/physiology

Fingerprint

Dive into the research topics of 'Ischaemic preconditioning blunts exercise-induced mitochondrial dysfunction, speeds oxygen uptake kinetics but does not alter severe-intensity exercise capacity'. Together they form a unique fingerprint.

Cite this