TY - JOUR
T1 - L-arabinose co-ingestion delays glucose absorption derived from sucrose in healthy men and women
T2 - a double-blind, randomised crossover trial
AU - Pasmans, Kenneth
AU - Meex, Ruth C R
AU - Trommelen, Jorn
AU - Senden, Joan M G
AU - Vaughan, Elaine E
AU - van Loon, Luc J C
AU - Blaak, Ellen E
PY - 2022/9/28
Y1 - 2022/9/28
N2 - Dietary interventions to delay carbohydrate digestion or absorption can effectively prevent hyperglycaemia in the early postprandial phase. L-arabinose can specifically inhibit sucrase. It remains to be assessed whether co-ingestion of L-arabinose with sucrose delays sucrose digestion, attenuates subsequent glucose absorption and impacts hepatic glucose output. In this double-blind, randomised crossover study, we assessed blood glucose kinetics following ingestion of a 200-ml drink containing 50 g of sucrose with 7·5 g of L-arabinose (L-ARA) or without L-arabinose (CONT) in twelve young, healthy participants (24 ± 1 years; BMI: 22·2 ± 0·5 kg/m2). Plasma glucose kinetics were determined by a dual stable isotope methodology involving ingestion of (U-13C6)-glucose-enriched sucrose, and continuous intravenous infusion of (6,6-2H2)-glucose. Peak glucose concentrations reached 8·18 ± 0·29 mmol/l for CONT 30 min after ingestion. In contrast, the postprandial rise in plasma glucose was attenuated for L-ARA, because peak glucose concentrations reached 6·62 ± 0·18 mmol/l only 60 min after ingestion. The rate of exogenous glucose appearance for L-ARA was 67 and 57 % lower compared with CONT at t = 15 min and 30 min, respectively, whereas it was 214 % higher at t = 150 min, indicating a more stable absorption of exogenous glucose for L-ARA compared with CONT. Total glucose disappearance during the first hour was lower for L-ARA compared with CONT (11 ± 1 v. 17 ± 1 g, P < 0·0001). Endogenous glucose production was not differentially affected at any time point (P = 0·27). Co-ingestion of L-arabinose with sucrose delays sucrose digestion, resulting in a slower absorption of sucrose-derived glucose without causing adverse effects in young, healthy adults.
AB - Dietary interventions to delay carbohydrate digestion or absorption can effectively prevent hyperglycaemia in the early postprandial phase. L-arabinose can specifically inhibit sucrase. It remains to be assessed whether co-ingestion of L-arabinose with sucrose delays sucrose digestion, attenuates subsequent glucose absorption and impacts hepatic glucose output. In this double-blind, randomised crossover study, we assessed blood glucose kinetics following ingestion of a 200-ml drink containing 50 g of sucrose with 7·5 g of L-arabinose (L-ARA) or without L-arabinose (CONT) in twelve young, healthy participants (24 ± 1 years; BMI: 22·2 ± 0·5 kg/m2). Plasma glucose kinetics were determined by a dual stable isotope methodology involving ingestion of (U-13C6)-glucose-enriched sucrose, and continuous intravenous infusion of (6,6-2H2)-glucose. Peak glucose concentrations reached 8·18 ± 0·29 mmol/l for CONT 30 min after ingestion. In contrast, the postprandial rise in plasma glucose was attenuated for L-ARA, because peak glucose concentrations reached 6·62 ± 0·18 mmol/l only 60 min after ingestion. The rate of exogenous glucose appearance for L-ARA was 67 and 57 % lower compared with CONT at t = 15 min and 30 min, respectively, whereas it was 214 % higher at t = 150 min, indicating a more stable absorption of exogenous glucose for L-ARA compared with CONT. Total glucose disappearance during the first hour was lower for L-ARA compared with CONT (11 ± 1 v. 17 ± 1 g, P < 0·0001). Endogenous glucose production was not differentially affected at any time point (P = 0·27). Co-ingestion of L-arabinose with sucrose delays sucrose digestion, resulting in a slower absorption of sucrose-derived glucose without causing adverse effects in young, healthy adults.
UR - http://www.scopus.com/inward/record.url?scp=85121026520&partnerID=8YFLogxK
U2 - 10.1017/S0007114521004153
DO - 10.1017/S0007114521004153
M3 - Article
C2 - 34657640
VL - 128
SP - 1072
EP - 1081
JO - British Journal of Nutrition
JF - British Journal of Nutrition
SN - 0007-1145
IS - 6
ER -