Abstract
Road transport significantly contributes to climate change and air pollution. Efforts to reduce transport sector emissions include deploying battery electric vehicles and designing their powertrains for improved performance. The European H2020 funded Functionally Integrated E-axle Ready for Mass Market Third GENeration Electric Vehicles (FITGEN) developed a novel functionally integrated e-axle (the FITGEN e-axle) for electric vehicles. This paper presents the environmental performance of the FITGEN e-axle. Using the Life Cycle Assessment (LCA) methodology, the study compares the FITGEN e-axle to the 2018 State-of-the-Art (SotA) e-drive, besides diesel and petrol-fuelled powertrains. The FITGEN powertrain reduces climate impacts by 10 % and energy consumption by 17 %, compared with the 2018 SotA e-drive due to the efficiency improvements and components integration. It also outperforms the 2018 SotA e-drive in several other impact categories, such as human toxicity (4–10 %), land use (19 %), and mineral depletion (8 %). However, the FITGEN powertrain only outperforms diesel and petrol powertrains in climate change and fossil resource scarcity impact categories. These findings imply that more efforts are required to improve the environmental profile of electric powertrains. Metal mining and production, especially for copper and aluminium, are critical for toxicity impacts. The sensitivity analysis demonstrates the robustness of the results, with no significant shift in their ranking order. The following aspects should be considered to improve the performance of electric powertrains from a life cycle perspective: improvement of components efficiency, reduced use of electronics and component integration, and use of low- carbon energy mix from their metal mining sites to production and use.
Original language | English |
---|---|
Article number | 166860 |
Number of pages | 11 |
Journal | Science of the Total Environment |
Volume | 904 |
Issue number | June |
DOIs | |
Publication status | Published - 15 Dec 2023 |
Bibliographical note
Funding Information:The authors thank the European Commission for supporting this research conducted within the European H2020 project FITGEN (Grant Agreement 824335 ).
Publisher Copyright:
© 2023 The Authors