Machine Learning in High Energy Physics Community White Paper

Kim Albertsson et al, Seth Moortgat

Research output: Contribution to journalConference paper

152 Citations (Scopus)

Abstract

Machine learning is an important applied research area in particle physics, beginning with applications to high-level physics analysis in the 1990s and 2000s, followed by an explosion of applications in particle and event identification and reconstruction in the 2010s. In this document we discuss promising future research and development areas in machine learning in particle physics with a roadmap for their implementation, software and hardware resource requirements, collaborative initiatives with the data science community, academia and industry, and training the particle physics community in data science. The main objective of the document is to connect and motivate these areas of research and development with the physics drivers of the High-Luminosity Large Hadron Collider and future neutrino experiments and identify the resource needs for their implementation. Additionally we identify areas where collaboration with external communities will be of great benefit.
Original languageEnglish
Article number022008
Number of pages28
JournalJournal of Physics: Conference Series
Volume1095
Issue number2
DOIs
Publication statusPublished - 1 Sep 2018
Event18th International Workshop on Advanced Computing and Analysis Techniques in Physics Research - University of Washington, Seattle, United States
Duration: 21 Aug 201725 Aug 2017
https://indico.cern.ch/event/567550/

Fingerprint

Dive into the research topics of 'Machine Learning in High Energy Physics Community White Paper'. Together they form a unique fingerprint.

Cite this