Measurement of boosted Higgs bosons produced via vector boson fusion or gluon fusion in the H →bb¯ decay mode using LHC proton-proton collision data at s = 13 TeV

The CMS collaboration, Jorgen D'Hondt, Nicolas Stylianou

Research output: Contribution to journalArticlepeer-review

1 Downloads (Pure)

Abstract

A measurement is performed of Higgs bosons produced with high transverse momentum (pT) via vector boson or gluon fusion in proton-proton collisions. The result is based on a data set with a center-of-mass energy of 13 TeV collected in 2016–2018 with the CMS detector at the LHC and corresponds to an integrated luminosity of 138 fb−1. The decay of a high-pT Higgs boson to a boosted bottom quark-antiquark pair is selected using large-radius jets and employing jet substructure and heavy-flavor taggers based on machine learning techniques. Independent regions targeting the vector boson and gluon fusion mechanisms are defined based on the topology of two quark-initiated jets with large pseudorapidity separation. The signal strengths for both processes are extracted simultaneously by performing a maximum likelihood fit to data in the large-radius jet mass distribution. The observed signal strengths relative to the standard model expectation are 4.9−1.6+1.9 and 1.6−1.5+1.7 for the vector boson and gluon fusion mechanisms, respectively. A differential cross section measurement is also reported in the simplified template cross section framework.

Original languageEnglish
Article number35
Pages (from-to)1-47
Number of pages47
JournalJournal of High Energy Physics
Volume2024
Issue number12
DOIs
Publication statusPublished - 4 Dec 2024

Bibliographical note

Funding Information:
Individuals have received support from the Marie-Curie program and the European Research Council and Horizon 2020 Grant, contract Nos. 675440, 724704, 752730, 758316, 765710, 824093, 101115353, 101002207, and COST Action CA16108 (European Union); the Leventis Foundation; the Alfred P. Sloan Foundation; the Alexander von Humboldt Foundation; the Science Committee, project no. 22rl-037 (Armenia); the Belgian Federal Science Policy Office; the Fonds pour la Formation \u00E0 la Recherche dans l\u2019Industrie et dans l\u2019Agriculture (FRIA-Belgium); the F.R.S.-FNRS and FWO (Belgium) under the \u201CExcellence of Science \u2014 EOS\u201D \u2014 be.h project n. 30820817; the Beijing Municipal Science & Technology Commission, No. Z191100007219010 and Fundamental Research Funds for the Central Universities (China); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Shota Rustaveli National Science Foundation, grant FR-22-985 (Georgia); the Deutsche Forschungsgemeinschaft (DFG), among others, under Germany\u2019s Excellence Strategy \u2014 EXC 2121 \u201CQuantum Universe\u201D \u2014 390833306, and under project number 400140256 \u2014 GRK2497; the Hellenic Foundation for Research and Innovation (HFRI), Project Number 2288 (Greece); the Hungarian Academy of Sciences, the New National Excellence Program \u2014 \u00DANKP, the NKFIH research grants K 131991, K 133046, K 138136, K 143460, K 143477, K 146913, K 146914, K 147048, 2020-2.2.1-ED-2021-00181, and TKP2021-NKTA-64 (Hungary); the Council of Science and Industrial Research, India; ICSC \u2014 National Research Center for High Performance Computing, Big Data and Quantum Computing and FAIR \u2014 Future Artificial Intelligence Research, funded by the NextGenerationEU program (Italy); the Latvian Council of Science; the Ministry of Education and Science, project no. 2022/WK/14, and the National Science Center, contracts Opus 2021/41/B/ST2/01369 and 2021/43/B/ST2/01552 (Poland); the Funda\u00E7\u00E3o para a Ci\u00EAncia e a Tecnologia, grant CEECIND/01334/2018 (Portugal); the National Priorities Research Program by Qatar National Research Fund; MCIN/AEI/10.13039/501100011033, ERDF \u201Ca way of making Europe\u201D, and the Programa Estatal de Fomento de la Investigaci\u00F3n Cient\u00EDfica y T\u00E9cnica de Excelencia Mar\u00EDa de Maeztu, grant MDM-2017-0765 and Programa Severo Ochoa del Principado de Asturias (Spain); the Chulalongkorn Academic into Its 2nd Century Project Advancement Project, and the National Science, Research and Innovation Fund via the Program Management Unit for Human Resources & Institutional Development, Research and Innovation, grant B39G670016 (Thailand); the Kavli Foundation; the Nvidia Corporation; the SuperMicro Corporation; the Welch Foundation, contract C-1845; and the Weston Havens Foundation (U.S.A.).

Funding Information:
We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid and other centers for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC, the CMS detector, and the supporting computing infrastructure provided by the following funding agencies: SC (Armenia), BMBWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, FAPERGS, and FAPESP (Brazil); MES and BNSF (Bulgaria); CERN; CAS, MoST, and NSFC (China); MINCIENCIAS (Colombia); MSES and CSF (Croatia); RIF (Cyprus); SENESCYT (Ecuador); ERC PRG, RVTT3 and MoER TK202 (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); SRNSF (Georgia); BMBF, DFG, and HGF (Germany); GSRI (Greece); NKFIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); MES (Latvia); LMTLT (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MOS (Montenegro); MBIE (New Zealand); PAEC (Pakistan); MES and NSC (Poland); FCT (Portugal); MESTD (Serbia); MCIN/AEI and PCTI (Spain); MOSTR (Sri Lanka); Swiss Funding Agencies (Switzerland); MST (Taipei); MHESI and NSTDA (Thailand); TUBITAK and TENMAK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (U.S.A.).

Publisher Copyright:
© The Author(s) 2024.

Keywords

  • Hadron-Hadron Scattering
  • Higgs Physics

Cite this