Mercury bioaccumulation in tilefish from the northeastern Gulf of Mexico 2 years after the Deepwater Horizon oil spill: Insights from Hg, C, N and S stable isotopes

V. Perrot, W.M. Landing, R.D. Grubbs, V.J.M. Salters

Research output: Contribution to journalArticlepeer-review

17 Citations (Scopus)

Abstract

Mercury (Hg) concentration in fish of the Gulf of the Mexico (GoM) is a major concern due to the importance of the GoM for U.S. fisheries. The Deepwater Horizon (DWH) oil spill in April 2010 in the northern GoM resulted in large amounts of oil and dispersant released to the water column, which potentially modified Hg bioaccumulation patterns in affected areas. We measured Hg species (methylmercury (MMHg) and inorganic Hg (IHg)) concentrations, and light (C, N and S) and Hg stable isotopes in muscle and liver tissues from tilefish (Lopholatilus chamaleonticeps) sampled in 2012 and 2013 along the shelf break of the northeastern GoM. Fish located close to the mouth of the Mississippi River (MR) and northwest of the DWH well-head (47 km) showed significantly lower Hg levels in muscle and liver than fish located further northeast of the DWH (>109 km), where 98% of tilefish had Hg levels in the muscle above US consumption advisory thresholds (50% for tilefish close to the DWH). Differences in light and Hg stable isotopes signatures were observed between these two areas, showing higher δ 15 N, and lower δ 202 Hg, Δ 199 Hg and δ 34 S in fish close to the DWH/MR. This suggests that suspended particles from the MR reduces Hg bioavailability at the base of the GoM food chains. This phenomenon can be locally enhanced by the DWH that resulted in increased particles in the water column as evidenced by the marine snow layer in the sediments. On the other hand, freshly deposited Hg associated with organic matter in more oligotrophic marine waters enhanced Hg bioaccumulation in local food webs. Comparing Hg isotopic composition in liver and muscle of fish indicates specific metabolic response in fish having accumulated high levels of MMHg.

Original languageEnglish
Pages (from-to)828-838
Number of pages11
JournalScience of the Total Environment
Volume666
DOIs
Publication statusPublished - 20 May 2019

Fingerprint

Dive into the research topics of 'Mercury bioaccumulation in tilefish from the northeastern Gulf of Mexico 2 years after the Deepwater Horizon oil spill: Insights from Hg, C, N and S stable isotopes'. Together they form a unique fingerprint.

Cite this