In this study, we present a novel microfluidic device for high-throughput production of monodisperse droplets. The proposed 3D-emulsifier consists of multiple parallel droplet generators coupled to only two inlets (continuous and dispersed phase). The three-dimensional nature of our device allows for a maximal density of droplet generators per surface area. We produce oil droplets in water using a device containing a single and four droplet generators. The droplet size and throughput were experimentally determined. In the four nozzle chip, we observe an important effect of the flow rate on the size distribution between the different droplet generators. Importantly, the shift between the squeezing and the transition regime shows the highest monodispersed production rate. For the four-nozzle chip, we show a 4-fold increase in the production throughput, while maintaining a high monodispersity of the droplets. A theoretical scale-up of our device is performed, demonstrating a possible throughput of 8.2 L/h, opening the door for (industrial) applications requiring much larger flow rates than what is typically achievable with microfluidic devices.
Original languageEnglish
Article numberie-2019-05935r.R2
Pages (from-to)1-7
Number of pages7
JournalIndustrial & Engineering Chemistry Research
Publication statusPublished - 2 Mar 2020

Fingerprint Dive into the research topics of 'Microfluidic Device for High-Throughput Production of Monodisperse Droplets'. Together they form a unique fingerprint.

Cite this