Mineral Growth beyond the Limits of Impurity Poisoning

Mike Sleutel, Jim Lutsko, Alexander E. S. Van Driessche

Research output: Contribution to journalArticlepeer-review

15 Citations (Scopus)

Abstract

More often than not, minerals formed in nature are grown at low supersaturation and from sources that are impure with respect to the crystals' main building blocks. Quite paradoxically, these conditions are in conflict with the established crystal growth theories that focus on the interplay between the crystal interface and impurities that are present in the growth medium. These theories predict a kinetic dead zone for the cases where low purity is combined with weak driving forces. Hints toward reconciling this apparent disparity have been given by the observation that a specific class of steps, so-called macrosteps, can circumvent the debilitating kinetic effects of impurities in ways that up until now are poorly understood. In this contribution, we examine the mechanism of crystal growth by means of kinetic Monte Carlo simulation at conditions close to impurity-induced kinetic arrest. In agreement with previous reports, we show that as a result of impurity binding to the crystal surface, steps spontaneously group into bunches and later condense into macrosteps. A kinetic analysis demonstrates that these macrosteps are able to evade crystal growth cessation under conditions where single steps are firmly pinned. We identify the mechanism of interstep cooperativity which leads to cessation evasion by macrosteps and demonstrate that it applies to a range of supersaturation and impurity concentration values. On the basis of these findings, we present a model that explains how minerals can grow from mother liquor solutions that would otherwise seem to be nonconducive to crystal growth.

Original languageEnglish
Pages (from-to)171–178
Number of pages8
JournalCrystal Growth & Design
Volume18
Issue number1
DOIs
Publication statusPublished - 3 Jan 2018

Fingerprint

Dive into the research topics of 'Mineral Growth beyond the Limits of Impurity Poisoning'. Together they form a unique fingerprint.

Cite this