Abstract
The emergence of Industry 4.0 allows for new approaches to solve industrial problems such as the Job Shop Scheduling Problem. It has been demonstrated that Multi-Agent Reinforcement Learning approaches are highly promising to handle complex scheduling scenarios. In this work we propose a user friendly Multi-Agent Reinforcement Learning tool, more appealing for industry. It allows the users to interact with the learning algorithms in such a way that all the constraints in the production floor are carefully included and the objectives can be adapted to real world scenarios. The user can either keep the best schedule obtained by a Q-Learning algorithm or adjust it by fixing some operations in order to meet certain constraints, then the tool will optimize the modified solution respecting the user preferences using two possible alternatives. These alternatives are validated using OR-Library benchmarks, the experiments show that the modified Q-Learning algorithm is able to obtain the best results.
Original language | English |
---|---|
Title of host publication | Optimization and Learning - Third International Conference, OLA2020, Cádiz, Spain, February 17-19, 2020, Proceedings |
Editors | Bernabé Dorronsoro, Patricia Ruiz, Juan Carlos de la Torre, Daniel Urda, El-Ghazali Talbi |
Publisher | Springer |
Pages | 3-12 |
Number of pages | 10 |
Volume | 1173 |
DOIs | |
Publication status | Published - 2020 |
Event | The International Conference in Optimization and Learning - , Spain Duration: 17 Feb 2020 → 19 Feb 2020 https://ola2020.sciencesconf.org/ |
Publication series
Name | Communications in Computer and Information Science |
---|---|
Publisher | Springer |
Conference
Conference | The International Conference in Optimization and Learning |
---|---|
Abbreviated title | OLA2020 |
Country/Territory | Spain |
Period | 17/02/20 → 19/02/20 |
Internet address |