Multi-level control of zero-moment point based humanoid biped robots: a review

Hayder F. N. Al-Shuka, F Allmendinger, B Corves, Wen-Hong Zhu, Bram Vanderborght

Research output: Contribution to journalArticlepeer-review

28 Citations (Scopus)


Researchers dream of developing autonomous humanoid robots which behave/walk like a human being. Biped robots, although complex, have the greatest potential for use in human-centred environments such as the home or office. Studying biped robots is also important for understanding human locomotion and improving control strategies for prosthetic and orthotic limbs. Control systems of humans walking in cluttered environments are complex, however, and may involve multiple local controllers and commands from the cerebellum. Although biped robots have been of interest over the last four decades, no unified stability/balance criterion adopted for stabilization of miscellaneous walking/running modes of biped robots has so far been available. The literature is scattered and it is difficult to construct a unified background for the balance strategies of biped motion. The zero-moment point (ZMP) criterion, however, is a conservative indicator of stabilized motion for a class of biped robots. Therefore, we offer a systematic presentation of multi-level balance controllers for stabilization and balance recovery of ZMP-based humanoid robots.
Original languageEnglish
Pages (from-to)2440-2466
Number of pages27
Issue number11
Publication statusPublished - 1 Nov 2016


  • Bipedal locomotion


Dive into the research topics of 'Multi-level control of zero-moment point based humanoid biped robots: a review'. Together they form a unique fingerprint.

Cite this