Abstract
The relationship between lean mass and functional asymmetry in terms of their magnitude and direction was examined in 22 high-level female tennis players (20.9 +/- 3.6 years). Lean mass of both upper and lower extremities was examined using Dual X-ray Absorptiometry. Functional asymmetry was assessed using a battery of field tests (handgrip strength, seated shot-put throw, plate tapping, single leg countermovement jump, single leg forward hop test, 6 m single leg hop test,and 505 change of direction (time and deficit)). Paired sample t-tests compared the dominant (overall highest/best (performance) value) against the non-dominant value (highest/best (performance) value of the opposing extremity). Linear regressions were used to explore the relationship between lean mass and functional asymmetry magnitudes. Kappa coefficients were used to examine the consistency in direction between the extremity displaying the highest lean mass value and the extremity performing dominantly across tests. Significant asymmetry magnitudes (p < 0.05) were found for all upper and lower extremity lean mass and functional values. No relationship was apparent between lean mass and functional asymmetry magnitudes (p-value range = 0.131–0.889). Despite finding perfect consistency in asymmetry direction (k-value = 1.00) for the upper extremity, poor to fair consistency (k-value range = -0.00–0.21) was found for the lower extremity. In conclusion, lean mass and functional asymmetries should be examined independently.
Original language | English |
---|---|
Article number | 11928 |
Number of pages | 14 |
Journal | International Journal of Environmental Research and Public Health |
Volume | 18 |
Issue number | 22 |
DOIs | |
Publication status | Published - 13 Nov 2021 |
Bibliographical note
Publisher Copyright:© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
Copyright:
Copyright 2022 Elsevier B.V., All rights reserved.
Keywords
- Women
- Performance
- Unilateral
- Racket sport
Fingerprint
Dive into the research topics of 'No Relationship between Lean Mass and Functional Asymmetry in High-Level Female Tennis Players'. Together they form a unique fingerprint.Datasets
-
Asymmetry data of elite female tennis players
Chapelle, L. (Creator), D'Hondt, E. (Creator) & Clarys, P. (Creator), Elsevier Gezondheidszorg, Maarssen: Elsevier, 1 Jul 2023
Dataset