No Relationship between Lean Mass and Functional Asymmetry in High-Level Female Tennis Players

Research output: Contribution to journalArticle

2 Downloads (Pure)

Abstract

The relationship between lean mass and functional asymmetry in terms of their magnitude and direction was examined in 22 high-level female tennis players (20.9 +/- 3.6 years). Lean mass of both upper and lower extremities was examined using Dual X-ray Absorptiometry. Functional asymmetry was assessed using a battery of field tests (handgrip strength, seated shot-put throw, plate tapping, single leg countermovement jump, single leg forward hop test, 6 m single leg hop test,and 505 change of direction (time and deficit)). Paired sample t-tests compared the dominant (overall highest/best (performance) value) against the non-dominant value (highest/best (performance) value of the opposing extremity). Linear regressions were used to explore the relationship between lean mass and functional asymmetry magnitudes. Kappa coefficients were used to examine the consistency in direction between the extremity displaying the highest lean mass value and the extremity performing dominantly across tests. Significant asymmetry magnitudes (p < 0.05) were found for all upper and lower extremity lean mass and functional values. No relationship was apparent between lean mass and functional asymmetry magnitudes (p-value range = 0.131–0.889). Despite finding perfect consistency in asymmetry direction (k-value = 1.00) for the upper extremity, poor to fair consistency (k-value range = -0.00–0.21) was found for the lower extremity. In conclusion, lean mass and functional asymmetries should be examined independently.
Original languageEnglish
Article number11928
Number of pages14
JournalInternational Journal of Environmental Research and Public Health
Volume18
DOIs
Publication statusPublished - 13 Nov 2021

Keywords

  • Women
  • Performance
  • Unilateral
  • Racket sport

Fingerprint

Dive into the research topics of 'No Relationship between Lean Mass and Functional Asymmetry in High-Level Female Tennis Players'. Together they form a unique fingerprint.

Cite this