Non-monotonic auto-regulation in single gene circuits

Lana Descheemaeker, Eveline Peeters, Sophie de Buyl

Research output: Contribution to journalArticlepeer-review

27 Downloads (Pure)


We theoretically study the effects of non-monotonic response curves in genetic auto-regulation by exploring the possible dynamical behaviors for such systems. Our motivation is twofold: we aim at conceiving the simplest genetic circuits for synthetic biology and at understanding the natural auto-regulation of the LrpB protein of the Sulfolobus solfataricus archaeon which exhibits non-monotonicity. We analyzed three toy models, based on mass-action kinetics, with increasing complexity and sought for oscillations and (fast) bistable switching. We performed large parameter scans and sensitivity analyses, and quantified the quality of the oscillators and switches by computing relative volumes in parameter space reproducing the sought dynamical behavior. All single gene systems need finely tuned parameters in order to oscillate, but bistable switches are more robust against parameter changes. We expected non-monotonic switches to be faster than monotonic ones, however solutions combining both auto-activation and repression in the physiological range to obtain fast switches are scarce. Our analysis shows that the Ss-LrpB system can not provide a bistable switch and that robust oscillations are unlikely. Gillespie simulations suggest that the function of the natural Ss-LrpB system is sensing via a spiking behavior, which is in line with the fact that this protein has a metabolic regulatory function and binds to a ligand.

Original languageEnglish
Article numbere0216089
Number of pages18
JournalPLoS ONE
Issue number5
Publication statusPublished - 2 May 2019


Dive into the research topics of 'Non-monotonic auto-regulation in single gene circuits'. Together they form a unique fingerprint.

Cite this