TY - PAT
T1 - Novel bacterial protein fibers
AU - Remaut, Han
AU - Sleutel, Mike
AU - Aspholm, Marina
AU - Pradhan, Brajabandhu
PY - 2022
Y1 - 2022
N2 - The present invention relates to the field of Bacillus endospore appendages (Ena) and new protein multimeric and fibrous assemblies for applications as bionanomaterials. In particular, the invention relates to self-assembling proteins composed of bacterial DUF3992 domain-containing protein subunits, containing a conserved N-terminal cysteine-containing region, and engineered proteins, as well as multimers and fibers thereof. Moreover, recombinant expression of said self-assembling protein subunits provides for production methods of novel protein nanofibers and modified display surfaces, such as Bacillus spores. Finally, the use of said multimers, fibers, and surfaces in biomedical and biotechnological applications is described herein.
AB - The present invention relates to the field of Bacillus endospore appendages (Ena) and new protein multimeric and fibrous assemblies for applications as bionanomaterials. In particular, the invention relates to self-assembling proteins composed of bacterial DUF3992 domain-containing protein subunits, containing a conserved N-terminal cysteine-containing region, and engineered proteins, as well as multimers and fibers thereof. Moreover, recombinant expression of said self-assembling protein subunits provides for production methods of novel protein nanofibers and modified display surfaces, such as Bacillus spores. Finally, the use of said multimers, fibers, and surfaces in biomedical and biotechnological applications is described herein.
UR - http://v3.espacenet.com/textdoc?DB=EPODOC&IDX=WO2022029325&F=0
M3 - Patent
M1 - WO2022029325
ER -