TY - JOUR
T1 - Phenolic compounds removal from sweet sorghum grain for efficient biobutanol production without nutrient supplementation
AU - Mirfakhar, Moein
AU - Asadollahi, Mohammad Ali
AU - Amiri, Hamid
AU - Karimi, Keikhosro
N1 - Publisher Copyright:
© 2017 Elsevier B.V.
PY - 2017/12/1
Y1 - 2017/12/1
N2 - Industrial scale production of biobutanol has been hampered by substrate cost and availability. Sweet sorghum grain is an inexpensive substrate for acetone-butanol-ethanol (ABE) production by Clostridium acetobutylicum. Amylolytic activity of C. acetobutylicum eliminates the need for the hydrolysis of starchy grain prior to fermentation. However, untreated grain contains phenolic compounds, i.e. tannins, which exhibit inhibitory effects against amylolytic activity and ABE fermentation. Less than 3 g/L ABE was obtained from untreated sweet sorghum grain at different substrate concentrations. Concentration of 0.2 mM gallic acid equivalent (GAE) of sorghum tannins was detected as the critical concentration which inhibits severely ABE fermentation. Applying a multi-stage hot water treatment resulted in tannins removal and significant enhancement in total ABE production up to 18 g/L. For efficient butanol production from 40, 60, and 80 g/L sorghum grain, hot water treatment with two, five, and six stages were found to be essential for efficient butanol production, respectively. Moreover, the amylolytic activity of C. acetobutylicum was inhibited by sorghum grain tannins, more than twice as high as the effects on the ABE fermentation pathway. Furthermore, unlike most substrates, sweet sorghum grain could provide all nutrients required for ABE fermentation, eliminating the need for supplementing expensive additional nutrients.
AB - Industrial scale production of biobutanol has been hampered by substrate cost and availability. Sweet sorghum grain is an inexpensive substrate for acetone-butanol-ethanol (ABE) production by Clostridium acetobutylicum. Amylolytic activity of C. acetobutylicum eliminates the need for the hydrolysis of starchy grain prior to fermentation. However, untreated grain contains phenolic compounds, i.e. tannins, which exhibit inhibitory effects against amylolytic activity and ABE fermentation. Less than 3 g/L ABE was obtained from untreated sweet sorghum grain at different substrate concentrations. Concentration of 0.2 mM gallic acid equivalent (GAE) of sorghum tannins was detected as the critical concentration which inhibits severely ABE fermentation. Applying a multi-stage hot water treatment resulted in tannins removal and significant enhancement in total ABE production up to 18 g/L. For efficient butanol production from 40, 60, and 80 g/L sorghum grain, hot water treatment with two, five, and six stages were found to be essential for efficient butanol production, respectively. Moreover, the amylolytic activity of C. acetobutylicum was inhibited by sorghum grain tannins, more than twice as high as the effects on the ABE fermentation pathway. Furthermore, unlike most substrates, sweet sorghum grain could provide all nutrients required for ABE fermentation, eliminating the need for supplementing expensive additional nutrients.
KW - ABE fermentation
KW - Biobutanol
KW - Clostridium acetobutylicum
KW - Phenolic removal
KW - Sweet sorghum grain
KW - Tannins
UR - http://www.scopus.com/inward/record.url?scp=85021447977&partnerID=8YFLogxK
U2 - 10.1016/j.indcrop.2017.06.028
DO - 10.1016/j.indcrop.2017.06.028
M3 - Article
AN - SCOPUS:85021447977
VL - 108
SP - 225
EP - 231
JO - Industrial Crops and Products
JF - Industrial Crops and Products
SN - 0926-6690
ER -