Phenolic Metabolites Protocatechuic Acid and Vanillic Acid Improve Nitric Oxide Bioavailability via the Akt-eNOS Pathway in Response to TNF-α Induced Oxidative Stress and Inflammation in Endothelial Cells

Joseph Festa, Aamir Hussain, Zakia Al-Hareth, Stephen J Bailey, Harprit Singh, Mariasole Da Boit

Research output: Contribution to journalArticlepeer-review

Abstract

Background/Objectives: Reduced nitric oxide (NO) bioavailability secondary to excess-superoxide-driven oxidative stress is central to endothelial dysfunction. Previous studies suggest that phenolic metabolites may improve NO bioavailability, yet limited research is available in response to an inflammatory mediator. Therefore, we assessed the effects of cyanidin-3-glucoside (C3G) and its phenolic metabolites protocatechuic acid (PCA) and vanillic acid (VA) on NO bioavailability in a TNF-α induced inflammatory environment. Methods: Primary human umbilical vein endothelial cells (HUVECs) were supplemented with either C3G, PCA, or VA at 1 μM for 24 h before being stimulated with TNF-α 20 ng/mL for an additional 24 h. Measurements included cell viability, apoptosis, reactive oxygen species (ROS), nitrite concentrations, and endothelial nitric oxide synthase (eNOS) and Akt at the mRNA and protein level. Results: Phenolic metabolites did not increase the eNOS expression or nitrite levels in the unstimulated environment; rather, the metabolites mediated NO bioavailability in response to TNF-α induced oxidative stress, with increased viability, eNOS mRNA, phosphorylation, and nitrite levels. Conclusions: Phenolic metabolites, in the presence of TNF-α, can improve NO bioavailability at physiologically relevant concentrations via the Akt-eNOS pathway. This demonstrates that the induction of inflammation is a prerequisite for phenolic metabolites to promote protective properties in endothelial cells by activating the Akt-eNOS pathway.

Original languageEnglish
Article number613
Number of pages <span style="color:red"p> <font size="1.5"> ✽ </span> </font>12
JournalMetabolites
Volume14
Issue number11
DOIs
Publication statusPublished - 11 Nov 2024

Bibliographical note

Publisher Copyright:
© 2024 by the authors.

Cite this