TY - JOUR
T1 - Predicting Morphodynamics for Beach Intertidal Systems in the North Sea: A Space-Time Stochastic Approach
AU - BOGAERT, Patrick
AU - Montreuil, Anne-Lise Clémence
AU - Chen, Margaret
PY - 2020/11/10
Y1 - 2020/11/10
N2 - The ability to accurately predict beach morphodynamics is of primary interest for coastal scientists and managers. With this goal in mind, a stochastic model of a sandy macrotidal barred beach is developed that is based on cross-shore elevation profiles. Intertidal elevation was monitored from monthly to annually for 19 years through Real Time Kinematics-GPS (RTK-GPS) and LiDAR surveys, and monthly during two years with an RTK-GPS. In addition, during two campaigns of about two weeks, intensive surveys on a daily basis were performed with an RTK-GPS on a different set of profiles. Based on the measurements, space and time variograms are constructed in order to assess the spatial and temporal dependencies of these elevations. A separable space-time covariance model is then built from them in order to generate a large number of plausible future profiles at arbitrary time instants t + τ, starting from observed profiles at time instants t. For each simulation, the total displaced sand volume is computed and a distribution is obtained. The mean of this distribution is in good agreement with the total displaced sand volume measured on the profiles, provided that they are lower than 45 m3/m. The time variogram also shows that 90% of maximum variability is reached for a time interval τ of three years. These results demonstrate how the temporal evolution of an integrated property, like the total displaced sand volume, can be estimated over time. This suggests that a similar stochastic approach could be useful for estimating other properties as long as one is able to capture the stochastic space-time variability of the underlying processes.
AB - The ability to accurately predict beach morphodynamics is of primary interest for coastal scientists and managers. With this goal in mind, a stochastic model of a sandy macrotidal barred beach is developed that is based on cross-shore elevation profiles. Intertidal elevation was monitored from monthly to annually for 19 years through Real Time Kinematics-GPS (RTK-GPS) and LiDAR surveys, and monthly during two years with an RTK-GPS. In addition, during two campaigns of about two weeks, intensive surveys on a daily basis were performed with an RTK-GPS on a different set of profiles. Based on the measurements, space and time variograms are constructed in order to assess the spatial and temporal dependencies of these elevations. A separable space-time covariance model is then built from them in order to generate a large number of plausible future profiles at arbitrary time instants t + τ, starting from observed profiles at time instants t. For each simulation, the total displaced sand volume is computed and a distribution is obtained. The mean of this distribution is in good agreement with the total displaced sand volume measured on the profiles, provided that they are lower than 45 m3/m. The time variogram also shows that 90% of maximum variability is reached for a time interval τ of three years. These results demonstrate how the temporal evolution of an integrated property, like the total displaced sand volume, can be estimated over time. This suggests that a similar stochastic approach could be useful for estimating other properties as long as one is able to capture the stochastic space-time variability of the underlying processes.
UR - http://www.scopus.com/inward/record.url?scp=85096060918&partnerID=8YFLogxK
U2 - 10.3390/jmse8110901
DO - 10.3390/jmse8110901
M3 - Article
VL - 8
SP - 1
EP - 20
JO - Journal of Marine Science and Engineering
JF - Journal of Marine Science and Engineering
SN - 2077-1312
IS - 11
M1 - 901
ER -