Projects per year
Abstract
This paper introduces a computationally efficient control scheme for safe human-robot interaction. The method relies on the Explicit Reference Governor (ERG) formalism to enforce input and state constraints in real-time, thus ensuring that the robot can safely operate in close proximity to humans. The resulting constrained control method can steer the robot arm to the desired end-effector pose (or a steady-state admissible approximation thereof) in the presence of actuator saturation, limited joint ranges, speed limits, static obstacles, and humans. The effectiveness of the proposed solution is supported by theoretical results and numerous experimental validations on the Franka Emika Panda robotic manipulator, a commercially available collaborative 7-DOF robot arm.
Original language | English |
---|---|
Article number | 102223 |
Number of pages | 14 |
Journal | Robotics and Computer-Integrated Manufacturing |
Volume | 73 |
Early online date | 5 Aug 2021 |
DOIs | |
Publication status | Published - Feb 2022 |
Bibliographical note
Funding Information:This work was supported by Fonds Wetenschappelijk Onderzoek (FWO), Belgium under grant numbers 37472 , 60523 , and 62062 , by the EU H2020 project under grant number 871237 , and by the Flemish Government under the program “Onderzoeksprogramma Artificiële Intelligentie (AI) Vlaanderen”.
Publisher Copyright:
© 2021
Copyright:
Copyright 2021 Elsevier B.V., All rights reserved.
Keywords
- Human–robot collaboration
- collision avoidance
- Constrained Control
- robot arm
Fingerprint
Dive into the research topics of 'Real-Time Motion Control of Robotic Manipulators for Safe Human-Robot Coexistence'. Together they form a unique fingerprint.-
VLAAI1: Flanders Artificial Intelligence Research program (FAIR) – second cycle
1/01/24 → 31/12/28
Project: Applied