Study of the formation of a protective layer in a defect from lithium-leaching organic coatings

Peter Visser, Alexander Lutz, Arjan Mol, Herman Terryn

Research output: Contribution to journalArticlepeer-review

52 Citations (Scopus)

Abstract

Lithium salts were investigated as leachable corrosion inhibitor and potential replacement for hexavalent chromium in organic coatings. Coatings loaded with lithium carbonate or lithium oxalate demonstrated active corrosion inhibition by the formation of a protective layer in a damaged area. The present paper
provides more insight into the formation and composition of the protective layer in a damaged area generated from the lithium salt loaded coatings when exposed to neutral salt spray testing conditions (ASTM B-117). Lithium-ion leaching from the coating matrix was demonstrated with atomic absorption spectroscopy and the pH conditions in the damaged area were determined with a scanning ion-selective electrode technique. Additionally, the formation of the protective layer was studied with microscopic and surface analytical techniques. Scanning electron micrographs and Auger electron spectroscopy depth profiles revealed the process of coverage and growth of the protective layer in the damaged area. Furthermore, X-ray photoelectron spectroscopy analysis indicated that the protective layer likely consists of a hydrated oxide in the form of a (pseudo) boehmite with lithium distributed in its matrix.
Original languageEnglish
Pages (from-to)80-90
Number of pages10
JournalProgress in Organic Coatings
Volume99
DOIs
Publication statusPublished - Oct 2016

Fingerprint

Dive into the research topics of 'Study of the formation of a protective layer in a defect from lithium-leaching organic coatings'. Together they form a unique fingerprint.

Cite this