Suppression of epithelial to mesenchymal transitioning (EMT) enhances ex vivo reprogramming of human exocrine pancreatic tissue towards functional insulin producing β-like cells

Maria Joao Lima, Kenneth Muir, Hilary Docherty, Robert Drummond, Neil Mcgowan, Shareen Forbes, Yves Heremans, Isabelle Houbracken, James Ross, Philippe Ravassard, Henry Heimberg, John Casey, Kevin Docherty

Research output: Contribution to journalArticlepeer-review

52 Citations (Scopus)
319 Downloads (Pure)

Abstract

Due to the lack of tissue available for islet transplantation, new sources of beta-cells have been sought for the treatment of type 1 diabetes. The aim of this study was to determine whether the human exocrid fraction from the islet isolation procedure could be reprogrammed to provide additional islet tissue for transplantation. The exocrine enriched cells rapidly dedifferentiated in culture and grew as a mesenchymal monolayer. Genetic lineage tracing confirmed that these mesenchymal cells arose in part through a process of epithelial to mesenchymal transitioning (EMT). A protocol was developed whereby transduction of these mesenchymal cells with adenoviruses containing Pdx1, Ngn3, MafA and Pax4 generated a population of cells that were enriched in glucagon-secreting alpha-like cells. Transdifferentiation or reprogramming towards insulin secreting beta-cells was enhanced, however, when using unpassaged cells in combination with inhibition of EMT by inclusion of ROCK and TGF-beta1 inhibitors. Resultant cells were able to secrete insulin in response to glucose and on transplantation, to normalise blood glucose levels in streptozotocin diabetic NOD/Scid mice. In conclusion, reprogramming of human exocrine enriched tissue can best be achieved using fresh material under conditions whereby EMT is inhibited. .rather than allowing the culture to expand as a mesenchymal monolayer.
Original languageEnglish
Pages (from-to)2821-2833
Number of pages13
JournalDiabetes
Volume62
Issue number8
Publication statusPublished - Aug 2013

Keywords

  • reprogramming
  • islet transplantation
  • stemcells
  • gene therapy
  • pancreatic transcription factors

Fingerprint

Dive into the research topics of 'Suppression of epithelial to mesenchymal transitioning (EMT) enhances ex vivo reprogramming of human exocrine pancreatic tissue towards functional insulin producing β-like cells'. Together they form a unique fingerprint.

Cite this