The foundations of cost-sensitive causal classification

Wouter Verbeke, Diego Olaya, Jeroen Berrevoets, Sam Verboven, Sebastian Maldonado

Research output: Contribution to journalArticle

Abstract

Classification is a well-studied machine learning task which concerns the assignment of instances to a set of outcomes. Classification models support the optimization of managerial decision-making across a variety of operational business processes. For instance, customer churn prediction models are adopted to increase the efficiency of retention campaigns by optimizing the selection of customers that are to be targeted. Cost-sensitive and causal classification methods have independently been proposed to improve the performance of classification models. The former considers the benefits and costs of correct and incorrect classifications, such as the benefit of a retained customer, whereas the latter estimates the causal effect of an action, such as a retention campaign, on the outcome of interest. This study integrates cost-sensitive and causal classification by elaborating a unifying evaluation framework. The framework encompasses a range of existing and novel performance measures for evaluating both causal and conventional classification models in a cost-sensitive as well as a cost-insensitive manner. We proof that conventional classification is a specific case of causal classification in terms of a range of performance measures when the number of actions is equal to one. The framework is shown to instantiate to application-specific cost-sensitive performance measures that have been recently proposed for evaluating customer retention and response uplift models, and allows to maximize profitability when adopting a causal classification model for optimizing decision-making. The proposed framework paves the way toward the development of cost-sensitive causal learning methods and opens a range of opportunities for improving data-driven business decision-making.
Original languageEnglish
Pages (from-to)1-20
Number of pages20
JournalEuropean Journal of Operational Research
Publication statusSubmitted - 2021

Keywords

  • Machine learning
  • Cost sensitive
  • Classification
  • Business analytics

Fingerprint Dive into the research topics of 'The foundations of cost-sensitive causal classification'. Together they form a unique fingerprint.

Cite this