Abstract

Cell plasma membrane proteins are considered as gatekeepers of the cell and play a major role in regulating various processes. Transport proteins constitute a subclass of cell plasma membrane proteins enabling the exchange of molecules and ions between the extracellular environment and the cytosol. A plethora of human pathologies are associated with the altered expression or dysfunction of cell plasma membrane transport proteins, making them interesting therapeutic drug targets. However, the search for therapeutics is challenging, since many drug candidates targeting cell plasma membrane proteins fail in (pre)clinical testing due to inadequate selectivity, specificity, potency or stability. These latter characteristics are met by nanobodies, which potentially renders them eligible therapeutics targeting cell plasma membrane proteins. Therefore, a therapeutic nanobody-based strategy seems a valid approach to target and modulate the activity of cell plasma membrane transport proteins. This review paper focuses on methodologies to generate cell plasma membrane transport protein-targeting nanobodies, and the advantages and pitfalls while generating these small antibody-derivatives, and discusses several therapeutic nanobodies directed towards transmembrane proteins, including channels and pores, adenosine triphosphate-powered pumps and porters.
Original languageEnglish
Article number63
Pages (from-to)1-19
Number of pages19
JournalBiomolecules
Volume11
Issue number1
DOIs
Publication statusPublished - 6 Jan 2021

Keywords

  • nanobodies
  • cell plasma membrane transport proteins
  • drug target
  • therapy

Fingerprint Dive into the research topics of 'Therapeutic Nanobodies Targeting Cell Plasma Membrane Transport Proteins: A High-Risk/High-Gain Endeavor'. Together they form a unique fingerprint.

Cite this