A Correspondence Between Homogeneous and Galois Coactions of Hopf Algebras

Onderzoeksoutput: Articlepeer review

Samenvatting

Let H be a Hopf algebra. A unital H-comodule algebra is called homogeneous if the algebra of coinvariants equals the ground field. A (not necessarily unital) H-comodule algebra is called Galois, or principal, or free, if the canonical map, also known as the Galois map, is bijective. In this paper, we establish a duality between a particular class of homogeneous H-comodule algebras, up to H-Morita equivalence, and a particular class of Galois H-comodule algebras, up to H-comodule algebra isomorphism.
Originele taal-2English
Pagina's (van-tot)1387-1416
Aantal pagina's30
TijdschriftAlgebras and Representation Theory
Volume23
Nummer van het tijdschrift4
DOI's
StatusPublished - 1 mei 2019

Vingerafdruk

Duik in de onderzoeksthema's van 'A Correspondence Between Homogeneous and Galois Coactions of Hopf Algebras'. Samen vormen ze een unieke vingerafdruk.

Citeer dit