Samenvatting
We construct a spectral, non-tiling set of size 2p in (Z/pZ)4, p odd prime. This example complements a previous counterexample in [C. Aten et al., Tiling sets and spectral sets over finite fields, arXiv:1509.01090], which existed only for p ≡ 3 (mod 4). On the contrary we show that the conjecture does hold in (Z/2Z)4.
Originele taal-2 | English |
---|---|
Pagina's (van-tot) | 481-488 |
Aantal pagina's | 8 |
Tijdschrift | Bulletin of the Belgian Mathematical Society - Simon Stevin |
Volume | 27 |
Nummer van het tijdschrift | 4 |
DOI's | |
Status | Published - 1 jan 2020 |