A monoidal structure on the category of relative Hopf modules

Daniel Bulacu, Stefaan Caenepeel

Onderzoeksoutput: Articlepeer review

1 Citaat (Scopus)

Samenvatting

Let $B$ be a bialgebra, and $A$ a left $B$-comodule algebra in a braided monoidal
category $\Cc$, and assume that $A$ is also a coalgebra, with a not-necessarily
associative or unital left $B$-action. Then we can define a right $A$-action on the tensor
product of two relative Hopf modules, and this defines a monoidal structure on the category
of relative Hopf modules if and only if $A$ is a bialgebra in the category of
left Yetter-Drinfeld modules over $B$. Some examples are given.
Originele taal-2English
Aantal pagina's22
TijdschriftJournal of Algebra and Its Applications
Volume11
StatusPublished - 1 apr 2012

Vingerafdruk

Duik in de onderzoeksthema's van 'A monoidal structure on the category of relative Hopf modules'. Samen vormen ze een unieke vingerafdruk.

Citeer dit