A QP perspective on topology change in Poisson-Lie T-duality

Onderzoeksoutput: Articlepeer review

2 Citaten (Scopus)
7 Downloads (Pure)

Samenvatting

We describe topological T-duality and Poisson-Lie T-duality in terms of QP (differential graded symplectic) manifolds and their canonical transformations. Duality is mediated by a QP-manifold on doubled non-abelian ‘correspondence’ space, from which we can perform mutually dual symplectic reductions, where certain canonical transformations play a vital role. In the presence of spectator coordinates, we show how the introduction of bibundle structure on correspondence space realises changes in the global fibration structure under Poisson-Lie duality. Our approach can be directly translated to the worldsheet to derive dual string current algebras. Finally, the canonical transformations appearing in our reduction procedure naturally suggest a Fourier-Mukai integral transformation for Poisson-Lie T-duality.

Originele taal-2English
Artikelnummer255205
Aantal pagina's36
TijdschriftJournal of Physics A: Mathematical and Theoretical
Volume56
Nummer van het tijdschrift25
DOI's
StatusPublished - 1 jun 2023

Bibliografische nota

Publisher Copyright:
© 2023 The Author(s). Published by IOP Publishing Ltd

Vingerafdruk

Duik in de onderzoeksthema's van 'A QP perspective on topology change in Poisson-Lie T-duality'. Samen vormen ze een unieke vingerafdruk.

Citeer dit