Projecten per jaar
Samenvatting
We describe topological T-duality and Poisson-Lie T-duality in terms of QP (differential graded symplectic) manifolds and their canonical transformations. Duality is mediated by a QP-manifold on doubled non-abelian ‘correspondence’ space, from which we can perform mutually dual symplectic reductions, where certain canonical transformations play a vital role. In the presence of spectator coordinates, we show how the introduction of bibundle structure on correspondence space realises changes in the global fibration structure under Poisson-Lie duality. Our approach can be directly translated to the worldsheet to derive dual string current algebras. Finally, the canonical transformations appearing in our reduction procedure naturally suggest a Fourier-Mukai integral transformation for Poisson-Lie T-duality.
Originele taal-2 | English |
---|---|
Artikelnummer | 255205 |
Aantal pagina's | 36 |
Tijdschrift | Journal of Physics A: Mathematical and Theoretical |
Volume | 56 |
Nummer van het tijdschrift | 25 |
DOI's | |
Status | Published - 1 jun 2023 |
Bibliografische nota
Publisher Copyright:© 2023 The Author(s). Published by IOP Publishing Ltd
Vingerafdruk
Duik in de onderzoeksthema's van 'A QP perspective on topology change in Poisson-Lie T-duality'. Samen vormen ze een unieke vingerafdruk.-
SRP72: SRP-Onderzoekszwaartepunt: Hoge energie fysica (HEP@VUB)
D'Hondt, J., Buitink, S., Craps, B., De Vries, K., Lowette, S. & Mariotti, A.
1/11/22 → 31/10/27
Project: Fundamenteel
-
FWOTM1046: Het ontsluieren van de hogere symmetrieën van kwantumvelden en branen
1/10/21 → 30/09/24
Project: Fundamenteel
-
SRP8: SRP (Zwaartepunt): Hoge-Energiefysica
D'Hondt, J., Van Eijndhoven, N., Craps, B. & Buitink, S.
1/11/12 → 31/10/24
Project: Fundamenteel